Abstract

Research in the field of vibration energy harvesting has been increasing over the past decade. Researchers have developed various methods to collect unused or wasted energy from physical systems, such as bridges. This paper presents and tests a piecewise-linear (PWL) piezoelectric energy harvester design. Similar studies have been conducted for an electromagnetic energy harvester and have shown the benefit of implementing a PWL energy harvester for some potential applications. This work investigates the performance of the PWL energy harvester using a piezoelectric cantilever beam as the energy generator, which is more suitable for smaller-scale harvesting applications. The design of the piezoelectric cantilever beam system uses a simple control algorithm to maintain the optimal gap size in the system. This design actively adjusts the resonance frequency to maximize power generation over a larger frequency range to make self-powered sensors more viable. The resonance frequency is optimized by adjusting the gap size between the piezoelectric cantilever beam and an elastic stopper using a combination of linear actuators, circuits, and microprocessors. The design shows an increased performance in maintaining an optimized vibration amplitude in the precomputed frequency range. An experimental realization of the design is tested and compared with the computational prediction to validate the design’s effectiveness.

References

1.
Paul
,
P.
,
Tutu
,
R.
,
Richards
,
W.
, and
Jerome
,
V.
,
2015
, “
Project Power Shoe: Piezoelectric Wireless Power Transfer—A Mobile Charging Technique
,”
IEEE Global Humanitarian Technology Conference (GHTC)
,
Seattle, WA, Oct. 8–11,
pp.
334
339
.10.1109/GHTC.2015.7343993
2.
Zhang
,
H.
,
Qin
,
W.
,
Zhou
,
Z.
,
Zhu
,
P.
, and
Du
,
W.
,
2023
, “
Piezomagnetoelastic Energy Harvesting From Bridge Vibrations Using Bi-Stable Characteristics
,”
Energy
,
263
, p.
125859
.10.1016/j.energy.2022.125859
3.
Zhang
,
Y.
,
Cai
,
S.
, and
Deng
,
L.
,
2014
, “
Piezoelectric-Based Energy Harvesting in Bridge Systems
,”
J. Intell. Mater. Syst. Struct.
,
25
(
12
), pp.
1414
1428
.10.1177/1045389X13507354
4.
Mohammad
,
M.
,
Saeed
,
Z.-R.
, and
Amir
,
H.
,
2023
, “
Piezoelectric-Based Energy Harvesting From Bridge Vibrations Subjected to Moving Successive Vehicles by Functionally Graded Cantilever Beams—Theoretical and Experimental Investigations
,”
Mech. Syst. Signal Process.
,
188
, p.
110015
.10.1016/j.ymssp.2022.110015
5.
De Marqui
,
C.
,
Erturk
,
A.
, and
Inman
,
D.
,
2009
, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
(
1–2
), pp.
9
25
.10.1016/j.jsv.2009.05.015
6.
Poulin
,
G.
,
Sarraute
,
E.
, and
Costa
,
F.
,
2004
, “
Generation of Electrical Energy for Portable Devices: Comparative Study of an Electromagnetic and a Piezoelectric System
,”
Sens. Actuators, A
,
116
(
3
), pp.
461
471
.10.1016/j.sna.2004.05.013
7.
Fang
,
S.
,
Miao
,
G.
,
Chen
,
K.
,
Xing
,
J.
,
Zhou
,
S.
,
Yang
,
Z.
, and
Liao
,
W.
,
2022
, “
Broadband Energy Harvester for Low-Frequency Rotations Utilizing Centrifugal Softening Piezoelectric Beam Array
,”
Energy
,
241
, p.
122833
.10.1016/j.energy.2021.122833
8.
Salem
,
S.
,
Ahmed
,
S.
,
Ahmed
,
S.
,
Alshammari
,
M.
,
Al-Dhlan
,
K.
,
Alanazi
,
A.
,
Saeed
,
A.
, and
Abouelatta
,
M.
,
2021
, “
Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure
,”
Micromachines
,
12
(
8
), p.
973
.10.3390/mi12080973
9.
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2008
, “
Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting
,”
J. Micromech. Microeng.
,
18
(
10
), p.
104013
.10.1088/0960-1317/18/10/104013
10.
Liu
,
J.
,
Fang
,
H.
,
Xu
,
Z.
,
Mao
,
X.
,
Shen
,
X.
,
Chen
,
D.
,
Liao
,
H.
, and
Cai
,
B.
,
2008
, “
A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting
,”
Microelectron. J.
,
39
(
5
), pp.
802
806
.10.1016/j.mejo.2007.12.017
11.
Ou
,
Q.
,
Chen
,
X.
,
Gutschmidt
,
S.
,
Wood
,
A.
, and
Leigh
,
N.
,
2010
, “
A Two-Mass Cantilever Beam Model for Vibration Energy Harvesting Applications
,”
IEEE International Conference on Automation Science and Engineering
,
Toronto, ON, Canada
, Aug. 21–24, pp.
301
306
.10.1109/COASE.2010.5584730
12.
Chen
,
T.
,
Wang
,
K.
,
Cheng
,
L.
,
Pan
,
H.
,
Cui
,
H.
, and
Zhou
,
J.
,
2024
, “
Theoretical and Experimental Research on a Quasi-Zero-Stiffness-Enabled Nonlinear Piezoelectric Energy Harvester
,”
Commun. Nonlinear Sci. Numer. Simul.
,
133
, p.
107863
.10.1016/j.cnsns.2024.107863
13.
Tran
,
N.
,
Ghayesh
,
M.
, and
Arjomandi
,
M.
,
2018
, “
Ambient Vibration Energy Harvesters: A Review on Nonlinear Techniques for Performance Enhancement
,”
Int. J. Eng. Sci.
,
127
, pp.
162
185
.10.1016/j.ijengsci.2018.02.003
14.
Tien
,
M.
, and
D’Souza
,
K.
,
2020
, “
Method for Controlling Vibration by Exploiting Piecewise-Linear Nonlinearity in Energy Harvesters
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
476
(
2233
), p.
20190491
.10.1098/rspa.2019.0491
15.
Tien
,
M.
, and
D’Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.10.1007/s11071-017-3385-5
16.
Tien
,
M.-H.
,
Hu
,
T.
, and
D’Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.10.1115/1.4039296
17.
Tien
,
M.
,
Hu
,
T.
, and
D’Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.10.2514/1.J058190
18.
Tien
,
M.-H.
,
Lu
,
M.-F.
, and
D’Souza
,
K.
,
2022
, “
Efficient Analysis of Stationary Dynamics of Piecewise-Linear Nonlinear Systems Modeled Using General State-Space Representations
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
081001
.10.1115/1.4054152
19.
Noguchi
,
K.
,
Saito
,
A.
,
Tien
,
M.
, and
D’Souza
,
K.
,
2022
, “
Bilinear Systems With Initial Gaps Involving Inelastic Collision: Forced Response Experiments and Simulations
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021001
.10.1115/1.4051493
20.
Veney
,
J.
, and
D’Souza
,
K.
,
2023
, “
Frequency Tunable Electromagnetic Vibration Energy Harvester Using Piecewise Linear Nonlinearity
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
479
(
2277
), p.
20230207
.10.1098/rspa.2023.0207
21.
Tien
,
M.
,
Lee
,
K.
, and
Huang
,
S.
,
2023
, “
Analyzing the Backbone Curve of Piecewise-Linear Non-Smooth Systems Using a Generalized Bilinear Frequency Approximation Method
,”
Mech. Syst. Signal Process.
,
204
, p.
110765
.10.1016/j.ymssp.2023.110765
22.
Mam
,
K.
,
Peigney
,
M.
, and
Siegert
,
D.
,
2017
, “
Finite Strain Effects in Piezoelectric Energy Harvesters Under Direct and Parametric Excitations
,”
J. Sound Vib.
,
389
, pp.
411
437
.10.1016/j.jsv.2016.11.022
23.
MATLAB,
2021
, “
Version 9.10.0 (R2021a)
,”
The MathWorks
,
Natick, MA
.
24.
Håvard
,
V.
,
Crowley
,
J.
, and
Rocklin
,
G.
,
1984
, “
New Ways of Estimating Frequency Response Functions
,”
J. Sound Vib.
,
18
, pp.
34
38
.
You do not currently have access to this content.