Abstract

This article presents an efficient layer-adaptive numerical scheme for time-fractional semilinear advection-reaction-diffusion equations with variable coefficients. In general, the solution to such type of problem exhibits mild singularity near t=0. The semilinear problem is linearized by applying Newton's linearization technique. The fractional component is discretized employing the L2-1σ formula, and the semidiscrete scheme is constructed as a set of boundary value problems (BVPs). To solve the resulting semidiscrete problems, the cubic B-spline collocation method is used. The presence of singularities creates a layer at the origin, and as a result, proposed scheme fails to achieve its optimal convergence rate on a uniform mesh. A graded mesh is used in the temporal direction with an user-chosen grading parameter to accelerate the convergence rate. On a suitable norm, convergence analysis and error-bound estimation are performed. The computational evaluation and comparison with the existing results demonstrate the robustness and effectiveness of the proposed scheme.

References

1.
Allen
,
S. M.
, and
Cahn
,
J. W.
,
1979
, “
A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening
,”
Acta Metall.
,
27
(
6
), pp.
1085
1095
.10.1016/0001-6160(79)90196-2
2.
Liu
,
C.
, and
Shen
,
J.
,
2003
, “
A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a Fourier-Spectral Method
,”
Phys. D
,
179
(
3–4
), pp.
211
228
.10.1016/S0167-2789(03)00030-7
3.
Wang
,
G.
,
2021
, “
A New (3+ 1)-Dimensional Schrödinger Equation: Derivation, Soliton Solutions and Conservation Laws
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1595
1602
.10.1007/s11071-021-06359-6
4.
Ghosh
,
B.
, and
Mohapatra
,
J.
,
2024
, “
Cubic B-Spline Based Numerical Schemes for Delayed Time-Fractional Advection-Diffusion Equations Involving Mild Singularities
,”
Phys. Scr.
,
99
(
8
), p.
085236
.10.1088/1402-4896/ad5fc7
5.
Wu
,
J.
,
1996
,
Theory and Applications of Partial Functional Differential Equations
,
Springer
,
New York
, Vol.
119
.
6.
Wang
,
G.
,
2021
, “
A Novel (3 + 1)-Dimensional sine-Gorden and a sinh-Gorden Equation: Derivation, Symmetries and Conservation Laws
,”
Appl. Math. Lett.
,
113
, p.
106768
.10.1016/j.aml.2020.106768
7.
Yang
,
X.
,
Gao
,
F.
, and
Ju
,
Y.
,
2020
,
General Fractional Derivatives With Applications in Viscoelasticity
,
Academic Press
,
New York
.
8.
Du
,
Q.
,
Yang
,
J.
, and
Zhou
,
Z.
,
2020
, “
Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods
,”
J. Sci. Comput.
,
85
(
2
), p.
42
.10.1007/s10915-020-01351-5
9.
Wang
,
G.
, and
Wazwaz
,
A.-M.
,
2022
, “
On the Modified Gardner Type Equation and Its Time Fractional Form
,”
Chaos, Solitons Fractals
,
155
, p.
111694
.10.1016/j.chaos.2021.111694
10.
Atangana
,
A.
,
2017
,
Fractional Operators With Constant and Variable Order With Application to Geo-Hydrology
,
Academic Press
,
New York
.
11.
Meerschaert
,
M. M.
, and
Sikorskii
,
A.
,
2019
,
Stochastic Models for Fractional Calculus
,
de Gruyter
, Vol.
43
,
Berlin, Germany
.
12.
Fallahgoul
,
H.
,
Focardi
,
S.
, and
Fabozzi
,
F.
,
2016
,
Fractional Calculus and Fractional Processes With Applications to Financial Economics: Theory and Application
,
Academic Press
,
New York
.
13.
Wang
,
G.
,
Yang
,
K.
,
Gu
,
H.
,
Guan
,
F.
, and
Kara
,
A.
,
2020
, “
A (2 + 1)-Dimensional sine-Gordon and sinh-Gordon Equations With Symmetries and Kink Wave Solutions
,”
Nucl. Phys. B
,
953
, p.
114956
.10.1016/j.nuclphysb.2020.114956
14.
Zhang
,
X.
,
Khalid
,
A.
,
Inc
,
M.
,
Rehan
,
A.
,
Nisar
,
K. S.
, and
Osman
,
M.
,
2022
, “
Cubic Spline Solutions of the Ninth Order Linear and Non-Linear Boundary Value Problems
,”
Alex. Eng. J.
,
61
(
12
), pp.
11635
11649
.10.1016/j.aej.2022.05.003
15.
Tassaddiq
,
A.
,
Khalid
,
A.
,
Naeem
,
M. N.
,
Ghaffar
,
A.
,
Khan
,
F.
,
Karim
,
S. A. A.
, and
Nisar
,
K.
,
2019
, “
A New Scheme Using Cubic B-Spline to Solve Non-Linear Differential Equations Arising in Visco-Elastic Flows and Hydrodynamic Stability Problems
,”
Mathematics
,
7
(
11
), p.
1078
.10.3390/math7111078
16.
Subhan
,
F.
,
Nisar
,
K. S.
,
Raja
,
M. A. Z.
,
Uddin
,
I.
,
Shoaib
,
M.
,
Ullah
,
K.
,
Islam
,
S.
, and
Munjam
,
S. R.
,
2024
, “
Novel Quartic Spline Method for Boundary Layer Fluid Flow Problem of Falkner-Skan Model With Wall Stretching and Transfer of Mass Effects
,”
Case Stud. Therm. Eng.
,
53
, p.
103887
.10.1016/j.csite.2023.103887
17.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
, Vol.
198
.
18.
Fitzhugh
,
R.
,
1961
, “
Impulse and Physiological States in Models of Nerve Membrane
,”
Biophys. J.
,
1
(
6
), pp.
445
466
.10.1016/S0006-3495(61)86902-6
19.
Nagumo
,
J.
,
Arimoto
,
S.
, and
Yoshizawa
,
S.
,
1962
, “
An Active Pulse Transmission Line Simulating Nerve Axon
,”
Proc. IRE
,
50
(
10
), pp.
2061
2070
.10.1109/JRPROC.1962.288235
20.
Newell
,
A. C.
, and
Whitehead
,
J. A.
,
1969
, “
Finite Bandwidth, Finite Amplitude Convection
,”
J. Fluid Mech.
,
38
(
2
), pp.
279
303
.10.1017/S0022112069000176
21.
Fisher
,
R. A.
,
1937
, “
The Wave of Advance of Advantageous Genes
,”
Ann. Eugen.
,
7
(
4
), pp.
355
369
.10.1111/j.1469-1809.1937.tb02153.x
22.
Jin
,
B.
,
Li
,
B.
, and
Zhou
,
Z.
,
2018
, “
Numerical Analysis of Nonlinear Subdiffusion Equations
,”
SIAM J. Numer. Anal.
,
56
(
1
), pp.
1
23
.10.1137/16M1089320
23.
Li
,
C.
,
Yi
,
Q.
, and
Chen
,
A.
,
2016
, “
Finite Difference Methods With Non-Uniform Meshes for Nonlinear Fractional Differential Equations
,”
J. Comput. Phys.
,
316
, pp.
614
631
.10.1016/j.jcp.2016.04.039
24.
Liao
,
H.
,
Yan
,
Y.
, and
Zhang
,
J.
,
2019
, “
Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations
,”
J. Sci. Comput.
,
80
(
1
), pp.
1
25
.10.1007/s10915-019-00927-0
25.
Li
,
D.
,
Wu
,
C.
, and
Zhang
,
Z.
,
2019
, “
Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems With Non-Smooth Solutions in Time Direction
,”
J. Sci. Comput.
,
80
(
1
), pp.
403
419
.10.1007/s10915-019-00943-0
26.
Yang
,
Y.
, and
Zeng
,
F.
,
2019
, “
Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations
,”
Commun. Appl. Math. Comput.
,
1
(
4
), pp.
621
637
.10.1007/s42967-019-00033-w
27.
Liao
,
H.
,
McLean
,
W.
, and
Zhang
,
J.
,
2019
, “
A Discrete Gronwall Inequality With Applications to Numerical Schemes for Subdiffusion Problems
,”
SIAM J. Numer. Anal.
,
57
(
1
), pp.
218
237
.10.1137/16M1175742
28.
Li
,
W.
,
Alikhanov
,
A.
,
Efendiev
,
Y.
, and
Leung
,
W. T.
,
2022
, “
Partially Explicit Time Discretization for Nonlinear Time Fractional Diffusion Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
113
, p.
106440
.10.1016/j.cnsns.2022.106440
29.
Ghosh
,
B.
, and
Mohapatra
,
J.
,
2023
, “
A Novel Numerical Technique for Solving Time Fractional Nonlinear Diffusion Equations Involving Weak Singularities
,”
Math. Methods Appl. Sci.
,
46
(
12
), pp.
12811
12825
.10.1002/mma.9214
30.
Alikhanov
,
A. A.
,
2015
, “
A New Difference Scheme for the Time Fractional Diffusion Equation
,”
J. Comput. Phys.
,
280
, pp.
424
438
.10.1016/j.jcp.2014.09.031
31.
Chen
,
H.
, and
Stynes
,
M.
,
2019
, “
Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem
,”
J. Sci. Comput.
,
79
(
1
), pp.
624
647
.10.1007/s10915-018-0863-y
32.
Prenter
,
P. M.
,
1975
,
Splines and Variational Methods
,
Wiley
,
London, UK
.
33.
de Boor
,
C.
,
1968
, “
On the Convergence of Odd-Degree Spline Interpolation
,”
J. Approximation Theory
,
1
(
4
), pp.
452
463
.10.1016/0021-9045(68)90033-6
34.
Hall
,
C.
,
1968
, “
On Error Bounds for Spline Interpolation
,”
J. Approximation Theory
,
1
(
2
), pp.
209
218
.10.1016/0021-9045(68)90025-7
You do not currently have access to this content.