Abstract

In this study, we propose an efficient iterative technique for investigating the analytical approximate solutions of the Caputo derivative-based fractional diffusion-wave equations. The proposed technique involves the Sumudu transform (ST) and the Daftardar-Gejji and Jafari method (DGJM). Further, we give various illustrations of linear and nonlinear diffusion-wave equations and demonstrate the solutions figuratively. The proposed technique is free from complex calculations and works without any discretization.

References

1.
Kumar
,
M.
,
2022
, “
An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations
,”
Int. J. Appl. Comput. Math.
,
8
(
5
), pp. 1--13. 10.1007/s40819-022-01466-3
2.
Liang
,
Y.
, and
Chen
,
W.
,
2018
, “
Continuous Time Random Walk Model With Asymptotical Probability Density of Waiting Times Via Inverse Mittag-Leffler Function
,”
Commun. Nonlinear Sci. Numer. Simul.
,
57
, pp.
439
448
.10.1016/j.cnsns.2017.10.014
3.
Liang
,
Y.
,
Yu
,
Y.
, and
Magin
,
R. L.
,
2022
, “
Computation of the Inverse Mittag–Leffler Function and Its Application to Modeling Ultraslow Dynamics
,”
Fractional Calculus Appl. Anal.
,
25
(
2
), pp.
439
452
.10.1007/s13540-022-00020-8
4.
Tandel
,
P.
,
Patel
,
H.
, and
Patel
,
T.
,
2022
, “
Tsunami Wave Propagation Model: A Fractional Approach
,”
J. Ocean Eng. Sci.
,
7
(
6
), pp.
509
520
.10.1016/j.joes.2021.10.004
5.
Acosta
,
S.
,
Chan
,
J.
,
Johnson
,
R.
, and
Palacios
,
B.
,
2024
, “
Pseudodifferential Models for Ultrasound Waves With Fractional Attenuation
,”
SIAM J. Appl. Math.
,
84
(
4
), pp.
1609
1630
.10.1137/24M1634011
6.
Jafari
,
H.
,
Yousefi
,
S.
,
Firoozjaee
,
M.
,
Momani
,
S.
, and
Khalique
,
C. M.
,
2011
, “
Application of Legendre Wavelets for Solving Fractional Differential Equations
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1038
1045
.10.1016/j.camwa.2011.04.024
7.
Liu
,
L.
,
Zhang
,
S.
,
Chen
,
S.
,
Liu
,
F.
,
Feng
,
L.
,
Turner
,
I.
,
Zheng
,
L.
, and
Zhu
,
J.
,
2023
, “
An Application of the Distributed-Order Time-and Space-Fractional Diffusion-Wave Equation for Studying Anomalous Transport in Comb Structures
,”
Fractal Fractional
,
7
(
3
), p.
239
.10.3390/fractalfract7030239
8.
Kuttler
,
C.
,
Maslovskaya
,
A. G.
, and
Moroz
,
L. I.
,
2021
, “
Numerical Simulation of Time-Fractional Diffusion-Wave Processes Applied to Communication in Bacterial Populations
,”
Days on Diffraction (DD)
, May 31–June 4, St. Petersburg, Russia, pp.
1
6
.10.1109/DD52349.2021.9598648
9.
González-Olvera
,
M.
,
Torres
,
L.
,
Hernández-Fontes
,
J.
, and
Mendoza
,
E.
,
2021
, “
Time Fractional Diffusion Equation for Shipping Water Events Simulation
,”
Chaos, Solitons Fractals
,
143
, p.
110538
.10.1016/j.chaos.2020.110538
10.
Daftardar-Gejji
,
V.
, and
Bhalekar
,
S.
,
2008
, “
Solving Fractional Diffusion-Wave Equations Using a New Iterative Method
,”
Fractional Calculus Appl. Anal.
,
11
(
2
), pp.
193
202
.
11.
Sandev
,
T.
,
Metzler
,
R.
, and
Tomovski
,
Ž.
,
2011
, “
Fractional Diffusion Equation With a Generalized Riemann–Liouville Time Fractional Derivative
,”
J. Phys. A: Math. Theor.
,
44
(
25
), p.
255203
.10.1088/1751-8113/44/25/255203
12.
Ou
,
C.
,
Cen
,
D.
,
Vong
,
S.
, and
Wang
,
Z.
,
2022
, “
Mathematical Analysis and Numerical Methods for Caputo-Hadamard Fractional Diffusion-Wave Equations
,”
Appl. Numer. Math.
,
177
, pp.
34
57
.10.1016/j.apnum.2022.02.017
13.
Jia
,
J.
, and
Wang
,
H.
,
2023
, “
Analysis of Asymptotic Behavior of the Caputo–Fabrizio Time-Fractional Diffusion Equation
,”
Appl. Math. Lett.
,
136
, p.
108447
.10.1016/j.aml.2022.108447
14.
Abuomar
,
M. M.
,
Syam
,
M. I.
, and
Azmi
,
A.
,
2022
, “
A Study on Fractional Diffusion—Wave Equation With a Reaction
,”
Symmetry
,
14
(
8
), p.
1537
.10.3390/sym14081537
15.
Derakhshan
,
M.
, and
Aminataei
,
A.
,
2021
, “
An Iterative Method for Solving Fractional Diffusion-Wave Equation Involving the Caputo–Weyl Fractional Derivative
,”
Numer. Linear Algebra Appl.
,
28
(
2
), p.
e2345
.10.1002/nla.2345
16.
Mustafa
,
S.
,
Hajira
,
Khan
,
H.
,
Shah
,
R.
, and
Masood
,
S.
,
2021
, “
A Novel Analytical Approach for the Solution of Fractional-Order Diffusion-Wave Equations
,”
Fractal Fractional
,
5
(
4
), p.
206
.10.3390/fractalfract5040206
17.
Liu
,
Z.
,
Cheng
,
A.
, and
Li
,
X.
,
2018
, “
A Novel Finite Difference Discrete Scheme for the Time Fractional Diffusion-Wave Equation
,”
Appl. Numer. Math.
,
134
, pp.
17
30
.10.1016/j.apnum.2018.07.001
18.
Heydari
,
M.
,
Hooshmandasl
,
M.
,
Ghaini
,
F. M.
, and
Cattani
,
C.
,
2015
, “
Wavelets Method for the Time Fractional Diffusion-Wave Equation
,”
Phys. Lett. A
,
379
(
3
), pp.
71
76
.10.1016/j.physleta.2014.11.012
19.
Wang
,
K.
, and
Liu
,
S.
,
2016
, “
A New Sumudu Transform Iterative Method for Time-Fractional Cauchy Reaction–Diffusion Equation
,”
SpringerPlus
,
5
(
1
), p.
865
.10.1186/s40064-016-2426-8
20.
Daftardar-Gejji
,
V.
, and
Jafari
,
H.
,
2006
, “
An Iterative Method for Solving Nonlinear Functional Equations
,”
J. Math. Anal. Appl.
,
316
(
2
), pp.
753
763
.10.1016/j.jmaa.2005.05.009
21.
Prakash
,
A.
,
Kumar
,
M.
, and
Baleanu
,
D.
,
2018
, “
A New Iterative Technique for a Fractional Model of Nonlinear Zakharov–Kuznetsov Equations Via Sumudu Transform
,”
Appl. Math. Comput.
,
334
, pp.
30
40
.10.1016/j.amc.2018.03.097
22.
Kumar
,
M.
, and
Daftardar-Gejji
,
V.
,
2019
, “
Exact Solutions of Fractional Partial Differential Equations by Sumudu Transform Iterative Method
,”
Fractional Calculus and Fractional Differential Equations
, Trends in Mathematics, Springer, Singapore, pp.
157
180
.10.1007/978-981-13-9227-6_8
23.
Anaç
,
H.
,
Merdan
,
M.
, and
Kesemen
,
T.
,
2020
, “
Solving for the Random Component Time-Fractional Partial Differential Equations With the New Sumudu Transform Iterative Method
,”
SN Appl. Sci.
,
2
(
6
), pp. 1--10. 10.1007/s42452-020-2625-3
24.
Mittag-Leffler
,
G.
,
1903
, “
Sur la Nouvelle Fonction Eα(x)
,”
C. R. Acad. Sci. Paris
,
137
, pp.
554
558
.
25.
Purohit
,
S.
,
2013
, “
Solutions of Fractional Partial Differential Equations of Quantum Mechanics
,”
Adv. Appl. Math. Mech.
,
5
(
5
), pp.
639
651
.10.4208/aamm.12-m1298
26.
Belgacem
,
F. B. M.
, and
Karaballi
,
A. A.
,
2006
, “
Sumudu Transform Fundamental Properties Investigations and Applications
,”
Int. J. Stochastic Anal.
,
2006
(
1
), pp. 1–23.10.1155/JAMSA/2006/91083
27.
Amer
,
Y.
,
Mahdy
,
A.
, and
Youssef
,
E.
,
2018
, “
Solving Systems of Fractional Nonlinear Equations of Emden Fowler Type by Using Sumudu Transform Method
,”
Global J. Pure Appl. Math.
,
14
(
1
), pp.
91
113
.https://www.tu.edu.sa/Attachments/f7a4c8f9-0b17-4caf-8546-bf338cd9ed57_.pdf
28.
Kumar
,
M.
,
2024
, “
Exact Solutions of (1 + 2)-Dimensional Non-Linear Time-Space Fractional PDEs
,”
Arab J. Math. Sci.
,
30
(
1
), pp.
30
42
.10.1108/AJMS-11-2021-0282
29.
Jafari
,
H.
, and
Seifi
,
S.
,
2009
, “
Homotopy Analysis Method for Solving Linear and Nonlinear Fractional Diffusion-Wave Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2006
2012
.10.1016/j.cnsns.2008.05.008
30.
Jafari
,
H.
, and
Daftardar-Gejji
,
V.
,
2006
, “
Solving Linear and Nonlinear Fractional Diffusion and Wave Equations by Adomian Decomposition
,”
Appl. Math. Comput.
,
180
(
2
), pp.
488
497
.10.1016/j.amc.2005.12.031
You do not currently have access to this content.