Abstract

Deployable satellite antenna structure has a bright prospect in high power space-borne antennas for strict telecommunication tasks. The alternating hot and cold environment in space as well as the nonuniform distribution of temperature may cause severe thermal-induced vibration problem for such a large-size and high flexible structure. In this work, a novel spatial orbital solar radiation model is presented with consideration of both the shielding effect of sunlight between antenna components and the earth shadow effect. Based on this model, a one-dimensional thermal–mechanical coupling dynamic model (ODT-MCDM) and three-dimensional one (TDT-MCDM) are, respectively, established to perform thermal–mechanical dynamic analysis of a deployable satellite antenna during orbital operation for comparison. A one-dimensional thermal conductive model and a Fourier thermal conductive model are, respectively, included in these two thermal–mechanical coupling dynamic models for heat conduction calculation. Temperature field variations and dynamic deformations of an example deployable circular truss antenna during on-orbit operation are examined using the established two thermal–mechanical coupling dynamic models. It is demonstrated that the antenna structure has similar temperature distribution when the one-dimensional thermal conductive model and Fourier thermal conductive model are used, but the temperature difference is lower when the latter one is used. What is more, only the three-dimensional thermal–mechanical coupling dynamic model can capture the high frequency vibration due to circumferential temperature gradient induced bending moment.

References

1.
Dai
,
L.
, and
Xiao
,
R.
,
2020
, “
Optimal Design and Analysis of Deployable Antenna Truss Structure Based on Dynamic Characteristics Restraints
,”
Aerosp. Sci. Technol.
,
106
, p.
106086
.10.1016/j.ast.2020.106086
2.
Jiang
,
X.
, and
Bai
,
Z. F.
,
2020
, “
Dynamics Modeling and Simulation for Deployment Characteristics of Mesh Reflector Antennas
,”
Appl. Sci.-Basel
,
10
(
21
), p.
7884
.10.3390/app10217884
3.
Li
,
T.
,
2012
, “
Deployment Analysis and Control of Deployable Space Antenna
,”
Aerosp. Sci. Technol.
,
18
(
1
), pp.
42
47
.10.1016/j.ast.2011.04.001
4.
Guo
,
W.
,
Li
,
Y.
,
Li
,
Y. Z.
,
Tian
,
S.
, and
Wang
,
S.
,
2016
, “
Thermal-Mechanical Analysis of Large Deployable Space Antenna Under Extreme Heat Loads
,”
J. Therm. Stress
,
39
(
8
), pp.
887
905
.10.1080/01495739.2016.1189776
5.
Li
,
P.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
Song
,
Y.
,
2016
, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form-Finding and Modal Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041017
.10.1115/1.4033440
6.
Peng
,
Y.
,
Zhao
,
Z. H.
,
Zhou
,
M.
,
He
,
J. W.
,
Yang
,
J. A.
, and
Xiao
,
Y.
,
2017
, “
Flexible Multibody Model and the Dynamics of the Deployment of Mesh Antennas
,”
J. Guid. Control Dyn.
,
40
(
6
), pp.
1499
1510
.10.2514/1.G000361
7.
Nie
,
R.
,
He
,
B.
, and
Zhang
,
L.
,
2018
, “
Deployment Dynamics Modeling and Analysis for Mesh Reflector Antennas Considering the Motion Feasibility
,”
Nonlinear Dyn.
,
91
(
1
), pp.
549
564
.10.1007/s11071-017-3891-5
8.
Liu
,
L.
,
Shan
,
J.
, and
Zhang
,
Y.
,
2016
, “
Dynamics Modeling and Analysis of Spacecraft With Large Deployable Hoop-Truss Antenna
,”
J. Spacecr. Rockets
,
53
(
3
), pp.
471
479
.10.2514/1.A33464
9.
Morterolle
,
S.
,
Maurin
,
B.
,
Quirant
,
J.
, and
Dupuy
,
C.
,
2012
, “
Numerical Form-Finding of Geotensoid Tension Truss for Mesh Reflector
,”
Acta Astronaut.
,
76
, pp.
154
163
.10.1016/j.actaastro.2012.02.025
10.
Liu
,
W.
, and
Li
,
D. X.
,
2013
, “
Simple Technique for Form-Finding and Tension Determining of Cable-Network Antenna Reflectors
,”
J. Spacecr. Rockets
,
50
(
2
), pp.
479
481
.10.2514/1.A32444
11.
Liu
,
W.
,
Li
,
D. X.
,
Yu
,
X. Z.
, and
Jiang
,
J. P.
,
2014
, “
Exact Mesh Shape Design of Large Cable-Network Antenna Reflectors With Flexible Ring Truss Supports
,”
Acta Mech. Sin.
,
30
(
2
), pp.
198
205
.10.1007/s10409-014-0029-6
12.
Zou
,
Y.
,
Ge
,
D.
,
Liu
,
S.
,
Zhang
,
S.
,
Fang
,
Y.
,
Zheng
,
G.
,
Dong
,
L.
, and
Xu
,
M.
,
2018
, “
Vibration Control Scheme and Its Experimental Verification for Large Spacecraft Antenna
,”
Spacecr. Eng.
,
27
(
3
), pp.
135
139
.10.3969/j.issn.1673-8748.2018.03.019
13.
Zhai
,
X. H.
,
Luo
,
Y. J.
,
Xie
,
S. L.
,
Xu
,
M. L.
, and
Zhang
,
X. N.
,
2019
, “
Active Vibration Control of Loop Antenna Structure
,”
Int. J. Appl. Electromagn. Mech.
,
59
(
3
), pp.
951
958
.10.3233/JAE-171229
14.
Liu
,
Y.
,
Li
,
X.
,
Qian
,
Y.-J.
, and
Yang
,
H.-L.
,
2022
, “
Rigid-Flexible Coupled Dynamic and Control for Thermally Induced Vibration and Attitude Motion of a Spacecraft With Hoop-Truss Antenna
,”
Appl. Sci.-Basel
,
12
(
3
), p.
1071
.10.3390/app12031071
15.
Shen
,
Z.
,
Li
,
H.
,
Liu
,
X.
, and
Hu
,
G.
,
2019
, “
Thermal-Mechanical Dynamic Analysis of a Satellite Antenna With the Cable-Network and Hoop-Truss Supports
,”
J. Therm. Stress
,
42
(
11
), pp.
1339
1356
.10.1080/01495739.2019.1649613
16.
Xue
,
M. D.
,
Duan
,
J.
, and
Xiang
,
Z. H.
,
2007
, “
Thermally-Induced Bending-Torsion Coupling Vibration of Large Scale Space Structures
,”
Comput. Mech.
,
40
(
4
), pp.
707
723
.10.1007/s00466-006-0134-x
17.
Yang
,
G. G.
,
Tang
,
A. F.
,
Yuan
,
Z. Y.
,
Yang
,
Z. C.
,
Li
,
S. J.
, and
Li
,
Y.
,
2020
, “
Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects
,”
IEEE Access
,
8
, pp.
89071
89083
.10.1109/ACCESS.2020.2993813
18.
Rong
,
J. L.
,
Xia
,
P.
, and
Xiang
,
D. L.
,
2017
, “
Parameterized Modeling and Thermal Deformation Analysis for Paraboloid Antenna Reflector
,”
Trans. Beijing Inst. Technol.
,
37
(
10
), pp.
998
1002
(in Chinese).10.15918/j.tbit1001-0645.2017.10.002
19.
Liu
,
T.
,
Zhang
,
W.
, and
Wang
,
J. F.
,
2017
, “
Nonlinear Dynamics of Composite Laminated Circular Cylindrical Shell Clamped Along a Generatrix and With Membranes at Both Ends
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1393
1417
.10.1007/s11071-017-3734-4
20.
Cui
,
Y. Q.
,
Lan
,
P.
,
Zhou
,
H. T.
, and
Yu
,
Z. Q.
,
2020
, “
The Rigid-Flexible-Thermal Coupled Analysis for Spacecraft Carrying Large-Aperture Paraboloid Antenna
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
3
), p.
031003
.10.1115/1.4045890
21.
Liu
,
F. S.
,
Gao
,
X. M.
, and
Jin
,
D. P.
,
2015
, “
Equivalent Membrane Model for the Dynamic Analysis of a Prestressed Paraboloidal Cable Nets
,”
J. Vib. Eng. Technol.
,
3
(
5
), pp.
589
600
.https://www.researchgate.net/publication/284921913
22.
Zhang
,
W.
,
Wu
,
R. Q.
, and
Behdinan
,
K.
,
2019
, “
Nonlinear Dynamic Analysis Near Resonance of a Beam-Ring Structure for Modeling Circular Truss Antenna Under Time-Dependent Thermal Excitation
,”
Aerosp. Sci. Technol.
,
86
, pp.
296
311
.10.1016/j.ast.2019.01.018
23.
Liu
,
T.
,
Zhang
,
W.
,
Zheng
,
Y.
, and
Zhang
,
Y. F.
,
2021
, “
Andronov-Hopf Bifurcations, Pomeau-Manneville Intermittent Chaos and Nonlinear Vibrations of Large Deployable Space Antenna Subjected to Thermal Load and Radial Pre-Stretched Membranes With 1:3 Internal Resonance
,”
Chaos, Solitons Fractals
,
144
, p.
110719
.10.1016/j.chaos.2021.110719
24.
Zhu
,
M. B.
,
Yang
,
Y. N.
, and
Xu
,
H. Q.
,
2006
, “
The Thermal Analysis for Large Deployable Antenna on Satellite
,”
Proceedings of the Second Asia International Symposium on Mechatronics, Dec. 12--15
, Hongkong, China, p.
12
.
25.
Qian
,
H. L.
,
Zhong
,
J.
, and
Fan
,
F.
,
2014
, “
Analysis on Non-Uniform Temperature Field Due to Sunshine for the Antenna Structure of Shanghai 65-Meter-Aperture Radio Telescope
,”
China Civ. Eng. J.
,
47
(
3
), pp.
39
46
.10.15951/j.tmgcxb.2014.03.002
26.
Li
,
J. L.
, and
Yan
,
S. Z.
,
2014
, “
Thermally Induced Bending Vibrations of a Flexible Rolled-Up Solar Array
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
419
432
.10.1016/j.applthermaleng.2014.07.015
27.
Yun
,
H. L.
, and
Yuan
,
P. F.
,
2019
, “
Thermal-Structural Analysis of Hoop Deployable Antenna in Real Orbital Environment
,”
Mech. Sci. Technol. Aerosp. Eng.
,
38
(
10
), pp.
1612
1618
(in Chinese).10.13433/j.cnki.1003 8728.20190013
You do not currently have access to this content.