Abstract

This paper presents a high-speed approach to simulating the long-term mechanobiological development of stem cells during the adipogenesis process. A novel three-dimensional model of human bone marrow-derived mesenchymal stem cells (hMSCs) undergoing adipogenic differentiation is presented herein. The elements of the cellular model have minute masses in femtograms and dimensions in nanometers. The disproportionality between the force and mass terms of the system, yielding a multiscale dynamic model, requires the solution to be calculated in femto- and picosecond time-steps. This makes producing the two-week time history of the adipogenic differentiation process computationally infeasible with conventional methods, even with the aid of supercomputers. The scaling method, based on the method of multiple scales proposed in authors' previous works, has been shown to address these imbalances and yield fast computational time for long-term simulation of cell processes. Herein, a novel approach to the scaling formulation is proposed, and methods for choosing scaling factors are presented and examined. Employing the new formulation results in a computational time of less than 1 h and 9 min on a normal desktop computer for the simulation of the 3D cellular model for the two-week time history of the adipogenic differentiation process. This is faster than previous efforts, which modeled the cell in two dimensions.

References

1.
Dror
,
R. O.
,
Dirks
,
R. M.
,
Grossman
,
J.
,
Xu
,
H.
, and
Shaw
,
D. E.
,
2012
, “
Biomolecular Simulation: A Computational Microscope for Molecular Biology
,”
Annu. Rev. Biophys.
,
41
(
1
), pp.
429
452
.10.1146/annurev-biophys-042910-155245
2.
Huggins
,
D. J.
,
Biggin
,
P. C.
,
Dämgen
,
M. A.
,
Essex
,
J. W.
,
Harris
,
S. A.
,
Henchman
,
R. H.
,
Khalid
,
S.
, et al.,
2019
, “
Biomolecular Simulations: From Dynamics and Mechanisms to Computational Assays of Biological Activity
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
,
9
(
3
), p.
e1393
.10.1002/wcms.1393
3.
Maruyama
,
Y.
,
Igarashi
,
R.
,
Ushiku
,
Y.
, and
Mitsutake
,
A.
,
2023
, “
Analysis of Protein Folding Simulation With Moving Root Mean Square Deviation
,”
J. Chem. Inf. Model.
,
63
(
5
), pp.
1529
1541
.10.1021/acs.jcim.2c01444
4.
Gershenson
,
A.
,
Gosavi
,
S.
,
Faccioli
,
P.
, and
Wintrode
,
P. L.
,
2020
, “
Successes and Challenges in Simulating the Folding of Large Proteins
,”
J. Biol. Chem.
,
295
(
1
), pp.
15
33
.10.1074/jbc.REV119.006794
5.
Lane
,
T. J.
,
Shukla
,
D.
,
Beauchamp
,
K. A.
, and
Pande
,
V. S.
,
2013
, “
To Milliseconds and Beyond: Challenges in the Simulation of Protein Folding
,”
Curr. Opin. Struct. Biol.
,
23
(
1
), pp.
58
65
.10.1016/j.sbi.2012.11.002
6.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
Weinheim, Germany
.
7.
Rabiei
,
M.
,
McColloch
,
A.
,
Rabbani
,
P.
,
Cho
,
M.
, and
Bowling
,
A.
,
2020
, “
Long Term Dynamic Simulation of a Stem Cell Nucleus
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
11
), p.
111002
.10.1115/1.4048195
8.
Rabiei
,
M.
,
Albaruni
,
M. A. S. I.
,
Joshi
,
V.
,
Cho
,
M.
, and
Bowling
,
A.
,
2024
, “
Long-Term Dynamic Simulation of Cellular Systems With Inhomogeneous Mass Distribution
,”
Multibody Syst. Dyn.
, pp.
1
20
.10.1007/s11044-024-10044-y
9.
McColloch
,
A.
,
Rabiei
,
M.
,
Rabbani
,
P.
,
Bowling
,
A.
, and
Cho
,
M.
,
2019
, “
Correlation Between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach
,”
Sci. Rep.
,
9
(
1
), p.
16381
.10.1038/s41598-019-52926-8
10.
Rabiei
,
M.
,
Joshi
,
V.
,
Fowlds
,
K.
,
Cho
,
M.
, and
Bowling
,
A.
,
2023
, “
Long-Term Dynamic Simulation of Adipogenic Differentiation of a Human Mesenchymal Stem Cell
,”
Multibody Syst. Dyn.
,
58
(
1
), pp.
113
133
.10.1007/s11044-023-09888-7
11.
Pegoraro
,
A. F.
,
Janmey
,
P.
, and
Weitz
,
D. A.
,
2017
, “
Mechanical Properties of the Cytoskeleton and Cells
,”
Cold Spring Harbor Perspect. Biol.
,
9
(
11
), p.
a022038
.10.1101/cshperspect.a022038
12.
Ingber
,
D. E.
,
2003
, “
Tensegrity I. Cell Structure and Hierarchical Systems Biology
,”
J. Cell Sci.
,
116
(
7
), pp.
1157
1173
.10.1242/jcs.00359
13.
Chamberlain
,
G.
,
Fox
,
J.
,
Ashton
,
B.
, and
Middleton
,
J.
,
2007
, “
Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing
,”
Stem Cells
,
25
(
11
), pp.
2739
2749
.10.1634/stemcells.2007-0197
14.
Mao
,
A. S.
,
Shin
,
J.-W.
, and
Mooney
,
D. J.
,
2016
, “
Effects of Substrate Stiffness and Cell-Cell Contact on Mesenchymal Stem Cell Differentiation
,”
Biomaterials
,
98
, pp.
184
191
.10.1016/j.biomaterials.2016.05.004
15.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
16.
Kilian
,
K. A.
,
Bugarija
,
B.
,
Lahn
,
B. T.
, and
Mrksich
,
M.
,
2010
, “
Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci.
,
107
(
11
), pp.
4872
4877
.10.1073/pnas.0903269107
17.
Feng
,
T.
,
Szabo
,
E.
,
Dziak
,
E.
, and
Opas
,
M.
,
2010
, “
Cytoskeletal Disassembly and Cell Rounding Promotes Adipogenesis From ES Cells
,”
Stem Cell Rev. Rep.
,
6
(
1
), pp.
74
85
.10.1007/s12015-010-9115-8
18.
Gao
,
L.
,
McBeath
,
R.
, and
Chen
,
C. S.
,
2010
, “
Stem Cell Shape Regulates a Chondrogenic Versus Myogenic Fate Through Rac1 and N-Cadherin
,”
Stem Cells
,
28
(
3
), pp.
564
572
.10.1002/stem.308
19.
Driscoll
,
T. P.
,
Cosgrove
,
B. D.
,
Heo
,
S.-J.
,
Shurden
,
Z. E.
, and
Mauck
,
R. L.
,
2015
, “
Cytoskeletal to Nuclear Strain Transfer Regulates Yap Signaling in Mesenchymal Stem Cells
,”
Biophys. J.
,
108
(
12
), pp.
2783
2793
.10.1016/j.bpj.2015.05.010
20.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1997
, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm That Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci.
,
94
(
3
), pp.
849
854
.10.1073/pnas.94.3.849
21.
Kim
,
D.-H.
, and
Wirtz
,
D.
,
2015
, “
Cytoskeletal Tension Induces the Polarized Architecture of the Nucleus
,”
Biomaterials
,
48
, pp.
161
172
.10.1016/j.biomaterials.2015.01.023
22.
Titushkin
,
I.
,
Sun
,
S.
,
Paul
,
A.
, and
Cho
,
M.
,
2013
, “
Control of Adipogenesis by Ezrin, Radixin and Moesin-Dependent Biomechanics Remodeling
,”
J. Biomech.
,
46
(
3
), pp.
521
526
.10.1016/j.jbiomech.2012.09.027
23.
Mathieu
,
P. S.
, and
Loboa
,
E. G.
,
2012
, “
Cytoskeletal and Focal Adhesion Influences on Mesenchymal Stem Cell Shape, Mechanical Properties, and Differentiation Down Osteogenic, Adipogenic, and Chondrogenic Pathways
,”
Tissue Eng. Part B: Rev.
,
18
(
6
), pp.
436
444
.10.1089/ten.teb.2012.0014
24.
Knoch
,
T. T.
,
Münkel
,
C. C.
, and
Langowski
,
J. J.
,
1998
, “
Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus: About the Structure of a Self Replicating Nano Fabrication Site
,”
Proceedings of the Sixth Foresight Conference on Molecular Nanotechnology
, Santa Clara, CA, Nov. 12–15, pp. 1–24.https://repub.eur.nl/pub/78083/012-1998-TAK-SCDKFZ-Heidelberg-AbsKeyLitRef-150302.pdf
25.
Liebman
,
C.
,
McColloch
,
A.
,
Rabiei
,
M.
,
Bowling
,
A.
, and
Cho
,
M.
,
2020
, “
Mechanics of the Cell: Interaction Mechanisms and Mechanobiological Models
,”
Current Topics in Membranes
, Vol.
86
,
Elsevier
, Amsterdam, The Netherlands, pp.
143
184
.
26.
Chugh
,
P.
, and
Paluch
,
E. K.
,
2018
, “
The Actin Cortex at a Glance
,”
J. Cell Sci.
,
131
(
14
), p.
jcs186254
.10.1242/jcs.186254
27.
Lundbæk
,
J. A.
,
Birn
,
P.
,
Girshman
,
J.
,
Hansen
,
A. J.
, and
Andersen
,
O. S.
,
1996
, “
Membrane Stiffness and Channel Function
,”
Biochemistry
,
35
(
12
), pp.
3825
3830
.10.1021/bi952250b
28.
Tinevez
,
J.-Y.
,
Schulze
,
U.
,
Salbreux
,
G.
,
Roensch
,
J.
,
Joanny
,
J.-F.
, and
Paluch
,
E.
,
2009
, “
Role of Cortical Tension in Bleb Growth
,”
Proc. Natl. Acad. Sci.
,
106
(
44
), pp.
18581
18586
.10.1073/pnas.0903353106
29.
Hawkins
,
T.
,
Mirigian
,
M.
,
Yasar
,
M. S.
, and
Ross
,
J. L.
,
2010
, “
Mechanics of Microtubules
,”
J. Biomech.
,
43
(
1
), pp.
23
30
.10.1016/j.jbiomech.2009.09.005
30.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
,
1993
, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
,
120
(
4
), pp.
923
934
.10.1083/jcb.120.4.923
31.
Pawlowski
,
P. H.
,
2007
, “
Mechanokinetic Model of Cell Membrane: Theoretical Analysis of Plasmalemma Homeostasis, Growth and Division
,”
J. Theor. Biol.
,
249
(
1
), pp.
67
76
.10.1016/j.jtbi.2007.07.002
32.
Sliogeryte
,
K.
,
Thorpe
,
S. D.
,
Lee
,
D. A.
,
Botto
,
L.
, and
Knight
,
M. M.
,
2014
, “
Stem Cell Differentiation Increases Membrane-Actin Adhesion Regulating Cell Blebability, Migration and Mechanics
,”
Sci. Rep.
,
4
(
1
), p.
7307
.10.1038/srep07307
33.
Sugitate
,
T.
,
Kihara
,
T.
,
Liu
,
X.-Y.
, and
Miyake
,
J.
,
2009
, “
Mechanical Role of the Nucleus in a Cell in Terms of Elastic Modulus
,”
Curr. Appl. Phys.
,
9
(
4
), pp.
e291
e293
.10.1016/j.cap.2009.06.020
34.
Potolitsyna
,
E.
,
Pickering
,
S. H.
,
Bellanger
,
A.
,
Germier
,
T.
,
Collas
,
P.
, and
Briand
,
N.
,
2024
, “
Cytoskeletal Rearrangement Precedes Nucleolar Remodeling During Adipogenesis
,”
Commun. Biol.
,
7
(
1
), p.
458
.10.1038/s42003-024-06153-1
35.
Kojima
,
H.
,
Ishijima
,
A.
, and
Yanagida
,
T.
,
1994
, “
Direct Measurement of Stiffness of Single Actin Filaments With and Without Tropomyosin by in Vitro Nanomanipulation
,”
Proc. Natl. Acad. Sci.
,
91
(
26
), pp.
12962
12966
.10.1073/pnas.91.26.12962
36.
Qi
,
Y.
,
Sun
,
L.
, and
Yang
,
H.
,
2017
, “
Lipid Droplet Growth and Adipocyte Development: Mechanistically Distinct Processes Connected by Phospholipids
,”
Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids
,
1862
(
10
), pp.
1273
1283
.10.1016/j.bbalip.2017.06.016
37.
Szewc
,
K.
,
Pozorski
,
J.
, and
Minier
,
J.-P.
,
2012
, “
Analysis of the Incompressibility Constraint in the Smoothed Particle Hydrodynamics Method
,”
Int. J. Numer. Methods Eng.
,
92
(
4
), pp.
343
369
.10.1002/nme.4339
38.
Va
,
H.
,
Choi
,
M.-H.
, and
Hong
,
M.
,
2022
, “
Real-Time Volume Preserving Constraints for Volumetric Model on GPU
,”
Comput., Mater. Continua
,
73
(
1
), pp.
831
848
.10.32604/cmc.2022.029576
39.
Guy
,
A.
, and
Bowling
,
A.
,
2018
, “
A Multiscale Formulation for Reducing Computation Time in Atomistic Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p.
051002
.10.1115/1.4039489
40.
Haghshenas-Jaryani
,
M.
,
Black
,
B.
,
Ghaffari
,
S.
,
Drake
,
J.
,
Bowling
,
A.
, and
Mohanty
,
S.
,
2014
, “
Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation Using Multiscale Analysis
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1013
1030
.10.1007/s11071-013-1185-0
41.
Joshi
,
V.
, and
Bowling
,
A.
,
2022
, “
Investigation of the Power Spectral Density of a Scaled Model Simulation of an Optical Tweezer
,” Proc. SPIE,
12198
, pp.
103
112
.10.1117/12.2633109
42.
Danesh
,
N.
,
Joshi
,
V. A.
,
Bowling
,
A.
,
Cho
,
M.
, and
Moon
,
H.
,
2023
, “
Dielectrophoretic Particle Focusing Using Axisymmetric Quadric Electrodes
,”
2023 IEEE Sensors
, Vienna, Austria, Oct. 29--Nov. 1, pp.
1
4
.10.1109/SENSORS56945.2023.10325193
43.
Joshi
,
V.
,
Danesh
,
N.
,
Moon
,
H.
,
Cho
,
M.
, and
Bowling
,
A.
,
2023
, “
Exploring Nanodynamics With Optical and Dielectrophoretic Trapping
,”
Proc. SPIE
,
12649
, pp.
115
124
.10.1117/12.2677485
44.
Moreno-Navarrete
,
J. M.
, and
Fernández-Real
,
J. M.
,
2012
, “
Adipocyte Differentiation
,”
Adipose Tissue Biology
,
M. E.
Symonds
, ed.,
Springer
,
New York
, pp.
17
38
.
45.
Bicknese
,
S.
,
Periasamy
,
N.
,
Shohet
,
S.
, and
Verkman
,
A.
,
1993
, “
Cytoplasmic Viscosity Near the Cell Plasma Membrane: Measurement by Evanescent Field Frequency-Domain Microfluorimetry
,”
Biophys. J.
,
65
(
3
), pp.
1272
1282
.10.1016/S0006-3495(93)81179-2
You do not currently have access to this content.