Abstract

This study investigated the dynamic displacement response of an elastic friction layer under load by simplifying a circular cylindrical wedge-wave ultrasonic motor (WW-USM) to a two-dimensional (2D) contact problem through suitable assumptions. A model of contact friction between a stator and rotor was established using the finite element software 3dansys, and transient contact mechanics between the stator and rotor were simulated. Given actual displacement and external force boundary conditions, appropriate contact parameter values were determined, the convergence of the solution was tested, reasonable results were obtained, and the motor performance curve of revolution speed versus torque was estimated. Piezoelectric conduction was applied in the ultrasonic motor prototyping of measurement characteristics, and the control voltage applied to the rotor prestressing to replace the traditional compression spring caused by uneven force from the rotor was selected to avoid adversely affecting the motor performance. The 3dansys simulation results indicate that the parameter values selected for the model for contact friction between the stator and rotor are crucial to the determination of the real friction constant. A set of optimal contact friction model parameter values was obtained in this study and provided reference information for contact mechanics analysis and design improvements in transient response.

Reference

1.
Barth
,
H. V.
,
1973
, “
Ultrasonic Driven Motor
,”
IBM Tech. Disclosure Bull.
,
16
(
7
), p.
2263
.
2.
Lavrinenko
,
V. V.
,
Vishnevski
,
V. S.
, and
Kartashev
,
I. A.
,
1976
, “
Equivalent Circuits of Piezoelectric Motor
,”
Bull. Kiev Polytech. Inst. Ser. Radio-Electrics
,
13
, pp.
57
61
.
3.
Vasiliev
,
P. E.
,
Klmavichjus
,
P. A. R.
,
Kondratiev
,
A. V.
,
Matsjukyavichjus
,
J. J.
,
Beksha
,
G. V. L.
, and
Kaminskas
,
V. A.
,
1979
, “
Vibration motor control
,” UK patent application GB2020857(A).
4.
Sashida
,
T.
,
1982
, “
Trial Construction of an Ultrasonic Vibration Driven Motor
,”
Oyo Butsuri
,
51
(
6
), pp.
713
720
.
5.
Sashida
,
T.
, and
Kenjo
,
T.
,
1993
,
An Introduction to Ultrasonic Motors
,
Clarendon Press
,
Oxford, UK
.
6.
Ueha
,
S.
, and
Tomikawa
,
Y.
,
1993
,
Ultrasonic Motors Theory and Applications
,
Clarendon Press
,
Oxford, UK
.
7.
Kumada
,
A.
,
1985
, “
A Piezoelectric Ultrasonic Motor
,”
Jpn. J. Appl. Phys.
,
24
(
S2
), pp.
739
741
.10.7567/JJAPS.24S2.739
8.
Nakamura
,
K.
,
Kurosawa
,
M.
, and
Ueha
,
S.
,
1991
, “
Characteristics of a Hybrid Transducer-Type Ultrasonic Motor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
3
), pp.
188
193
.10.1109/58.79602
9.
Toyada
,
J.
, and
Murano
,
K.
,
1991
, “
A Small-Size Ultrasonic Linear Motor
,”
Jpn. J. Appl. Phys.
,
30
(
9S
), pp.
2274
2276
.10.1143/JJAP.30.2274
10.
Li
,
C.
, and
Zhao
,
C.
,
1998
, “
A Large Thrust Linear Ultrasonic Motor Using Longitudinal and Flexural Modes of Rod-Shaped Transducer
,”
IEEE Ultrasonic Symposium
, Sendai, Japan, Oct. 5–8, pp.
691
694
.10.1109/ULTSYM.1998.762242
11.
Hemsel
,
T.
, and
Wallaschek
,
J.
,
2000
, “
Survey of the Present State of the Art Piezoelectric Linear Motors
,”
Ultrasonics
,
38
(
1–8
), pp.
37
40
.10.1016/S0041-624X(99)00143-2
12.
Vyshnevskyy
,
O.
,
Kovalev
,
S.
, and
Mehner
,
J.
,
2005
, “
Coupled Tangential-Axial Resonant Modes of Piezoelectric Hollow Cylinders and Their Application in Ultrasonic Motors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
1
), pp.
31
36
.10.1109/TUFFC.2005.1397348
13.
Vyshnevsky
,
O.
,
Kovalev
,
S.
, and
Wischnewskiy
,
W.
,
2005
, “
A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
11
), pp.
2047
2053
.10.1109/TUFFC.2005.1561674
14.
Shi
,
Y.
, and
Zhao
,
C.
,
2011
, “
A New Standing-Wave-Type Linear Ultrasonic Motor Based on In-Plane Modes
,”
Ultrasonics
,
51
(
4
), pp.
397
404
.10.1016/j.ultras.2010.11.006
15.
Maeno
,
T.
,
Tsukimoto
,
T.
, and
Miyake
,
A.
,
1992
, “
Finite-Element Analysis of the Rotor/Stator Contact in a Ring-Type Ultrasonic Motor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
6
), pp.
668
674
.10.1109/58.165549
16.
Hirata
,
H.
, and
Ueha
,
S.
,
1993
, “
Characteristic Estimation of a Traveling Wave Type Ultrasonic Motor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
40
(
4
), pp.
402
406
.10.1109/58.251289
17.
Hagood
,
W.
, and
McFarland
,
J.
,
1995
, “
Modeling of Piezoelectric Rotary Ultrasonic Motor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
2
), pp.
210
224
.10.1109/58.365235
18.
Storck
,
H.
, and
Wallaschek
,
J.
,
2003
, “
The Effect of Tangential Elasticity of the Contact Layer Between Stator and Rotor in Travelling Wave Ultrasonic Motors
,”
Int. J. Non-Linear Mech.
,
38
(
2
), pp.
143
159
.10.1016/S0020-7462(01)00048-8
19.
Storck
,
H.
,
Littmann
,
W.
,
Wallaschek
,
J.
, and
Mracek
,
M.
,
2002
, “
The Effect of Friction Reduction in Presence of Ultrasonic Vibrations and Its Relevance to Travelling Wave Ultrasonic Motors
,”
Ultrasonics
,
40
(
1–8
), pp.
379
383
.10.1016/S0041-624X(02)00126-9
20.
Vasiljev
,
P.
,
Mazeika
,
D.
, and
Kulvietis
,
G.
,
2007
, “
Modelling and Analysis of Omni-Directional Piezoelectric Actuator
,”
J. Sound Vib.
,
308
(
3–5
), pp.
867
878
.10.1016/j.jsv.2007.03.074
21.
Shigematsu
,
T.
, and
Kurosawa
,
M. K.
,
2008
, “
Friction Drive of an SAW Motor. Part I: Measurements
,”
IEEE Trans. Ultrason. Feroelectrics Freq. Control
,
55
(
9
), pp.
2005
2015
.10.1109/TUFFC.891
22.
Shigematsu
,
T.
, and
Kurosawa
,
M. K.
,
2008
, “
Friction Drive of an SAW Motor. Part II: Analyses
,”
IEEE Trans. Ultrason. Feroelectrics Freq. Control
,
55
(
9
), pp.
2016
2024
.10.1109/TUFFC.892
23.
Shigematsu
,
T.
, and
Kurosawa
,
M. K.
,
2008
, “
Friction Drive of an SAW Motor. Part III: Modeling
,”
IEEE Trans. Ultrason. Feroelectrics Freq. Control
,
55
(
10
), pp.
2266
2276
.10.1109/TUFFC.925
24.
Shigematsu
,
T.
, and
Kurosawa
,
M. K.
,
2008
, “
Friction Drive of an SAW Motor. Part IV: Physics of Contact
,”
IEEE Trans. Ultrason. Feroelectrics Freq. Control
,
55
(
10
), pp.
2277
2287
.10.1109/TUFFC.926
25.
Shigematsu
,
T.
, and
Kurosawa
,
M. K.
,
2008
, “
Friction Drive of an SAW Motor. Part V: Design Criteria
,”
IEEE Trans. Ultrason. Feroelectrics Freq. Control
,
55
(
10
), pp.
2288
2297
.10.1109/TUFFC.927
26.
Shi
,
Y.
,
Zhao
,
C.
, and
Huang
,
W.
,
2010
, “
Linear Ultrasonic Motor With Wheel-Shaped Stator
,”
Sens. Actuators A3 Phys.
,
161
(
1–2
), pp.
205
209
.10.1016/j.sna.2010.05.009
27.
Radi
,
B.
, and
El Hami
,
A.
,
2010
, “
The Study of the Dynamic Contact in Ultrasonic Motor
,”
Appl. Math. Modell.
,
34
(
12
), pp.
3767
3777
.10.1016/j.apm.2010.03.002
28.
Shi
,
J.
, and
Liu
,
B.
,
2011
, “
Optimum Efficiency Control of Traveling-Wave Ultrasonic Motor System
,”
IEEE Trans. Ind. Electron.
,
58
(
10
), pp.
4822
4829
.10.1109/TIE.2011.2114316
29.
Park
,
S.
, and
He
,
S.
,
2012
, “
Standing Wave Brass-PZT Square Tubular Ultrasonic Motor
,”
Ultrasonics
,
52
(
7
), pp.
880
889
.10.1016/j.ultras.2012.02.010
30.
Liu
,
Y.
,
Chen
,
W.
,
Liu
,
J.
, and
Yang
,
X.
,
2013
, “
A High-Power Linear Ultrasonic Motor Using Bending Vibration Transducer
,”
IEEE Trans. Ind. Electron.
,
60
(
11
), pp.
5160
5166
.10.1109/TIE.2012.2233691
31.
Zhou
,
S.
, and
Yao
,
Z.
,
2014
, “
Design and Optimization of a Modal-Independent Linear Ultrasonic Motor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
3
), pp.
535
546
.10.1109/TUFFC.2014.2937
32.
Mashimo
,
T.
,
2014
, “
Micro Ultrasonic Motor Using a One Cube Millimeter Stator
,”
Sens. Actuators A Phys.
,
213
, pp.
102
107
.10.1016/j.sna.2014.03.018
33.
Peled
,
G.
,
Yasinov
,
R.
, and
Karasikov
,
N.
,
2016
, “
Performance and Applications of L1B2 Ultrasonic Motors
,”
Actuators
,
5
(
2
), p.
15
.10.3390/act5020015
34.
Izuhara
,
S.
, and
Mashimo
,
T.
,
2018
, “
Design and Evalution of a Micro Linear Ultrasonic Motor
,”
Sens. Actuators A Phys.
,
278
, pp.
60
66
.10.1016/j.sna.2018.05.022
35.
Mizuno
,
A.
,
Oikawa
,
K.
,
Aoyagi
,
M.
,
Kajiwara
,
H.
,
Tamura
,
H.
, and
Takano
,
T.
,
2018
, “
Examination of High-Torque Sandwich-Type Spherical Ultrasonic Motor Using With High-Power Multimode Annular Vibrating Stator
,”
Actuators
,
7
(
1
), p.
8
.10.3390/act7010008
36.
Liu
,
Y.
,
Yan
,
J.
,
Wang
,
L.
, and
Chen
,
W.
,
2019
, “
A two-DOF Ultrasonic Motor Using a Longitudinal-Bending Hybrid Sandwich Transducer
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
3041
3050
.10.1109/TIE.2018.2847655
37.
Wang
,
Y.
,
Chen
,
Z.
,
Shi
,
Y.
,
Cui
,
C.
, and
Cheng
,
F.
,
2020
, “
Longitudinal Composite-Mode Linear Ultrasonic Motor for Motion Servo System of Probe Station
,”
Actuators
,
9
(
4
), p.
111
.10.3390/act9040111
38.
Lu
,
D.
,
Lin
,
Q.
,
Chen
,
B.
,
Jiang
,
C.
, and
Hu
,
X.
,
2020
, “
A Single-Modal Linear Ultrasonic Motor Based on Multi Vibration Modes of PZT Ceramics
,”
Ultrasonics
,
107
,p.
106158
.10.1016/j.ultras.2020.106158
39.
Tu
,
T.-H.
,
2020
, “
Friction Layer Analysis of a Surface Acoustic Wave Motor
,”
ASME J. Tribol.
,
142
(
9
), p.
091202
.10.1115/1.4046803
40.
Shi
,
M.
,
Liu
,
X.
,
Feng
,
K.
, and
Zhang
,
K.
,
2021
, “
Experimental and Numerical Investigation of a Self-Adapting Non-Contact Ultrasonic Motor
,”
Tribol. Int.
,
153
, p.
106624
.10.1016/j.triboint.2020.106624
41.
Sun
,
H.
,
Yin
,
H.
,
Liu
,
J.
, and
Zhang
,
X.
,
2021
, “
Efficiency Model for Traveling Wave-Type Ultrasonic Motors Based on Contact Variables and Preload
,”
Actuators
,
10
(
7
), p.
158
.10.3390/act10070158
42.
Sun
,
G.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Lang
,
S.
, and
Zhu
,
H.
,
2021
, “
A Recursive Characteristics Analysis-Based Stationary Evaluation Model for Friction-Induced Attractors in the Sliding Friction Process
,”
ASME J. Tribol.
,
143
(
10
), p.
101704
.10.1115/1.4050425
43.
Wang
,
X. Y.
,
Feng
,
H. T.
,
Zhou
,
C. G.
,
Chen
,
Z. T.
, and
Xie
,
J. L.
,
2022
, “
A New Two-Stage Degradation Model for the Preload of Linear Motion Ball Guide Considering Machining Errors
,”
ASME J. Tribol.
,
144
(
5
), p.
051202
.10.1115/1.4053625
44.
Li
,
M.
,
Lei
,
Y.
,
Hu
,
Y.
,
Du
,
S.
,
Gao
,
D.
,
Wang
,
Z.
, and
Xu
,
T.
,
2022
, “
A Novel Semiempirical Friction Coefficient Model Between Needle Polyvinyl Alcohol Tissue Phantom and Its Validation by Using Computational Inverse Technique
,”
ASME J. Tribol.
,
144
(
8
), p.
081203
.10.1115/1.4053788
45.
Deng
,
X.
,
Ni
,
Y.
, and
Liu
,
X.
,
2022
, “
Numerical Analysis of Transient Wheel-Rail Rolling/Slipping Contact Behaviors
,”
ASME J. Tribol.
,
144
(
10
), p.
101503
.10.1115/1.4054592
46.
Yu
,
T.-H.
,
Yang
,
S.-Y.
,
Lee
,
C.-L.
, and
Yin
,
C.-C.
,
2011
, “
Modal Separation of Circular Cylindrical WW-USM
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
635
642
.10.1016/j.finel.2011.01.006
47.
Yu
,
T.-H.
, and
Yin
,
C.-C.
,
2012
, “
A Modal Sensor Integrated Circular Cylindrical Wedge Wave Ultrasonic Motor
,”
Sens. Actuators A Phys.
,
174
, pp.
144
154
.10.1016/j.sna.2011.10.004
48.
Bathe
,
K.-J.
, and
Wilson
,
E. L.
,
1976
,
Numerical Methods in Finite Element Analysis
, Chap. 8,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
308
344
.
49.
ANSYS,
2007
,
Release 11.0 Documentation for ANSYS: Structural Analysis Guide, Transient Dynamic Analysis
,
Sas Ip
,
Canonsburg, PA
.
50.
ANSYS,
2007
,
Release 11.0 Documentation for ANSYS: Contact Technology Guide, Surface-to-Surface Contact
,
Sas Ip
,
Canonsburg, PA
.
51.
ANSI/IEEE Standard
,
1987
,
Piezoelectricity
,
IEEE
,
New York
.
You do not currently have access to this content.