Abstract

This article focuses on investigating fractional Lyapunov exponents for generalized ψ-fractional differential systems. By employing a new and more suitable definition, we derive an expression for the fractional Lyapunov exponents using the inverse of the Mittag-Leffler function, which depends on the kernel, weight, and order of the considered fractional derivative. We also provide an upper bound for the obtained fractional Lyapunov exponents that is tighter than the one available in existing literature. Finally, experiments conducted on a hyperchaotic 5D system and the well-known Lorenz system serve to illustrate and verify our main results.

References

1.
Cai
,
M.
,
Karniadakis
,
G. E.
, and
Li
,
C. P.
,
2022
, “
Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant
,”
Chaos
,
32
(
7
), p.
071101
.10.1063/5.0099450
2.
Li
,
C. P.
, and
Cai
,
M.
,
2019
,
Theory and Numerical Approximations of Fractional Integrals and Derivatives
,
SIAM
,
Philadelphia, PA
.
3.
Tarasov
,
E. V.
, and
Tarasova
,
V. V.
,
2021
,
Economic Dynamics With Memory: Fractional Calculus Approach
,
De Gruyter
,
Berlin, Germany
.
4.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2002
, “
Analysis of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
265
(
2
), pp.
229
248
.10.1006/jmaa.2000.7194
5.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier Science
,
Amsterdam, The Netherlands
.
6.
Kou
,
C. H.
,
Zhou
,
H. C.
, and
Li
,
C. P.
,
2012
, “
Existence and Continuation Theorems of Riemann-Liouville Type Fractional Differential Equations
,”
Int. J. Bifurcation Chaos Appl. Sci.
,
22
(
4
), p.
1250077
.10.1142/S0218127412500770
7.
Singh
,
D.
,
Pandey
,
R. K.
, and
Kumari
,
S.
,
2023
, “
A Fourth Order Accurate Numerical Method for Non-Linear Time Fractional Reaction-Diffusion Equation on a Bounded Domain
,”
Phys. D
,
449
, p.
133742
.10.1016/j.physd.2023.133742
8.
Li
,
C. P.
, and
Li
,
Z. Q.
,
2023
, “
Stability and ψ-Algebraic Decay of the Solution to ψ-Fractional Differential System
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
24
(
2
), pp.
695
733
.10.1515/ijnsns-2021-0189
9.
Doubbi-Bounoua
,
M.
, and
Yin
,
C. T.
,
2022
, “
Hopf Bifurcation in Caputo-Hadamard Fractional-Order Differential System
,”
Fractals
,
30
(
1
), p.
2250015
.10.1142/S0218348X22500153
10.
Ma
,
L.
, and
Huang
,
R.
,
2024
, “
Asymptotic Stability and Fold Bifurcation Analysis in Caputo-Hadamard Type Fractional Differential System
,”
Chin. J. Phys.
,
88
, pp.
171
197
.10.1016/j.cjph.2024.01.028
11.
Ding
,
D.
,
Xu
,
X.
,
Yang
,
Z.
,
Zhang
,
H.
,
Zhu
,
H.
, and
Liu
,
T.
,
2024
, “
Extreme Multistability of Fractional-Order Hyperchaotic System Based on Dual Memristors and Its Implementation
,”
Chaos, Solitons Fractals
,
183
, p.
114878
.10.1016/j.chaos.2024.114878
12.
Echenausía-Monroy
,
J. L.
,
Gilardi-Velázquez
,
H. E.
,
Wang
,
N.
,
Jaimes-Reátegui
,
R.
,
García-López
,
J. H.
, and
Huerta-Cuellar
,
G.
,
2022
, “
Multistability Route in a PWL Multi-Scroll System Through Fractional-Order Derivatives
,”
Chaos, Solitons Fractals
,
161
, p.
112355
.10.1016/j.chaos.2022.112355
13.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
,
2007
,
Advances in Fractional Calculus
,
Springer
, Dordrecht,
The Netherlands
.
14.
Li
,
C. P.
,
Gong
,
Z. Q.
,
Qian
,
D. L.
, and
Chen
,
Y. Q.
,
2010
, “
On the Bound of the Lyapunov Exponents for Fractional Differential Systems
,”
Chaos
,
20
, p.
013127
.10.1063/1.3314277
15.
Li
,
C. P.
, and
Yin
,
C. T.
,
2021
, “
An Estimate of the Bound of the Lyapunov Exponents for Caputo-Hadamard Fractional Differential System
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
7
), p.
071002
.10.1115/1.4051024
16.
N'Gbo
,
N.
, and
Tang
,
J. H.
,
2023
, “
Define the Lyapunov Exponents for ψ-Fractional Differential System
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
5
), p.
051001
.10.1115/1.4057041
17.
Li
,
C. P.
,
2024
, “
On ψ Fractional Integral
,”
J. Math. Sci.
(in press).10.1007/s10958-024-07382-9
18.
Ma
,
L.
, and
Wu
,
B.
,
2023
, “
On the Fractional Lyapunov Exponent for Hadamard-Type Fractional Differential System
,”
Chaos
,
33
(
1
), p.
013117
.10.1063/5.0131661
19.
Agrawal
,
O. M.
,
2012
, “
Generalized Multiparameters Fractional Variational Calculus
,”
Int. J. Differ. Equations
,
2012
(
1
), p.
521750
.10.1155/2012/521750
20.
Agrawal
,
O. M.
,
2012
, “
Some Generalized Fractional Calculus Operators and Their Applications in Integral Equations
,”
Fractional Calculus Appl. Anal.
,
15
(
4
), pp.
700
711
.10.2478/s13540-012-0047-7
21.
Jarad
,
F.
,
Abdeljawad
,
T.
, and
Shah
,
K.
,
2020
, “
On the Weighted Fractional Operators of a Function With Respect to Another Function
,”
Fractals
,
28
(
8
), p.
2040011
.10.1142/S0218348X20400113
22.
Li
,
C. P.
,
N'Gbo
,
N.
, and
Su
,
F.
,
2024
, “
Finite Difference Methods for Nonlinear Fractional Differential Equation With ψ-Caputo Derivative
,”
Phys. D
,
460
, p.
134103
.10.1016/j.physd.2024.134103
23.
Liang
,
Y. J.
,
Yue
,
Y.
, and
Magin
,
R. L.
,
2022
, “
Computation of the Inverse Mittag-Leffler Function and Its Application to Modeling Ultraslow Dynamics
,”
Fractional Calculus Appl. Anal.
,
25
(
2
), pp.
439
452
.10.1007/s13540-022-00020-8
24.
Zarei
,
A.
,
2015
, “
Complex Dynamics in a 5-D Hyper-Chaotic Attractor With Four Wings, One Equilibrium and Multiple Chaotic Attractors
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
585
605
.10.1007/s11071-015-2013-5
You do not currently have access to this content.