Issue Section:
Research Papers
Abstract
This article focuses on investigating fractional Lyapunov exponents for generalized -fractional differential systems. By employing a new and more suitable definition, we derive an expression for the fractional Lyapunov exponents using the inverse of the Mittag-Leffler function, which depends on the kernel, weight, and order of the considered fractional derivative. We also provide an upper bound for the obtained fractional Lyapunov exponents that is tighter than the one available in existing literature. Finally, experiments conducted on a hyperchaotic 5D system and the well-known Lorenz system serve to illustrate and verify our main results.
Issue Section:
Research Papers
References
1.
Cai
, M.
, Karniadakis
, G. E.
, and Li
, C. P.
, 2022
, “Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant
,” Chaos
, 32
(7
), p. 071101
.10.1063/5.00994502.
Li
, C. P.
, and Cai
, M.
, 2019
, Theory and Numerical Approximations of Fractional Integrals and Derivatives
, SIAM
, Philadelphia, PA
.3.
Tarasov
, E. V.
, and Tarasova
, V. V.
, 2021
, Economic Dynamics With Memory: Fractional Calculus Approach
, De Gruyter
, Berlin, Germany
.4.
Diethelm
, K.
, and Ford
, N. J.
, 2002
, “Analysis of Fractional Differential Equations
,” J. Math. Anal. Appl.
, 265
(2
), pp. 229
–248
.10.1006/jmaa.2000.71945.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
, Elsevier Science
, Amsterdam, The Netherlands
.6.
Kou
, C. H.
, Zhou
, H. C.
, and Li
, C. P.
, 2012
, “Existence and Continuation Theorems of Riemann-Liouville Type Fractional Differential Equations
,” Int. J. Bifurcation Chaos Appl. Sci.
, 22
(4
), p. 1250077
.10.1142/S02181274125007707.
Singh
, D.
, Pandey
, R. K.
, and Kumari
, S.
, 2023
, “A Fourth Order Accurate Numerical Method for Non-Linear Time Fractional Reaction-Diffusion Equation on a Bounded Domain
,” Phys. D
, 449
, p. 133742
.10.1016/j.physd.2023.1337428.
Li
, C. P.
, and Li
, Z. Q.
, 2023
, “Stability and -Algebraic Decay of the Solution to -Fractional Differential System
,” Int. J. Nonlinear Sci. Numer. Simul.
, 24
(2
), pp. 695
–733
.10.1515/ijnsns-2021-01899.
Doubbi-Bounoua
, M.
, and Yin
, C. T.
, 2022
, “Hopf Bifurcation in Caputo-Hadamard Fractional-Order Differential System
,” Fractals
, 30
(1
), p. 2250015
.10.1142/S0218348X2250015310.
Ma
, L.
, and Huang
, R.
, 2024
, “Asymptotic Stability and Fold Bifurcation Analysis in Caputo-Hadamard Type Fractional Differential System
,” Chin. J. Phys.
, 88
, pp. 171
–197
.10.1016/j.cjph.2024.01.02811.
Ding
, D.
, Xu
, X.
, Yang
, Z.
, Zhang
, H.
, Zhu
, H.
, and Liu
, T.
, 2024
, “Extreme Multistability of Fractional-Order Hyperchaotic System Based on Dual Memristors and Its Implementation
,” Chaos, Solitons Fractals
, 183
, p. 114878
.10.1016/j.chaos.2024.11487812.
Echenausía-Monroy
, J. L.
, Gilardi-Velázquez
, H. E.
, Wang
, N.
, Jaimes-Reátegui
, R.
, García-López
, J. H.
, and Huerta-Cuellar
, G.
, 2022
, “Multistability Route in a PWL Multi-Scroll System Through Fractional-Order Derivatives
,” Chaos, Solitons Fractals
, 161
, p. 112355
.10.1016/j.chaos.2022.11235513.
Sabatier
, J.
, Agrawal
, O. P.
, and Tenreiro Machado
, J. A.
, 2007
, Advances in Fractional Calculus
, Springer
, Dordrecht, The Netherlands
.14.
Li
, C. P.
, Gong
, Z. Q.
, Qian
, D. L.
, and Chen
, Y. Q.
, 2010
, “On the Bound of the Lyapunov Exponents for Fractional Differential Systems
,” Chaos
, 20
, p. 013127
.10.1063/1.331427715.
Li
, C. P.
, and Yin
, C. T.
, 2021
, “An Estimate of the Bound of the Lyapunov Exponents for Caputo-Hadamard Fractional Differential System
,” ASME J. Comput. Nonlinear Dyn.
, 16
(7
), p. 071002
.10.1115/1.405102416.
N'Gbo
, N.
, and Tang
, J. H.
, 2023
, “Define the Lyapunov Exponents for -Fractional Differential System
,” ASME J. Comput. Nonlinear Dyn.
, 18
(5
), p. 051001
.10.1115/1.405704117.
18.
Ma
, L.
, and Wu
, B.
, 2023
, “On the Fractional Lyapunov Exponent for Hadamard-Type Fractional Differential System
,” Chaos
, 33
(1
), p. 013117
.10.1063/5.013166119.
Agrawal
, O. M.
, 2012
, “Generalized Multiparameters Fractional Variational Calculus
,” Int. J. Differ. Equations
, 2012
(1
), p. 521750
.10.1155/2012/52175020.
Agrawal
, O. M.
, 2012
, “Some Generalized Fractional Calculus Operators and Their Applications in Integral Equations
,” Fractional Calculus Appl. Anal.
, 15
(4
), pp. 700
–711
.10.2478/s13540-012-0047-721.
Jarad
, F.
, Abdeljawad
, T.
, and Shah
, K.
, 2020
, “On the Weighted Fractional Operators of a Function With Respect to Another Function
,” Fractals
, 28
(8
), p. 2040011
.10.1142/S0218348X2040011322.
Li
, C. P.
, N'Gbo
, N.
, and Su
, F.
, 2024
, “Finite Difference Methods for Nonlinear Fractional Differential Equation With -Caputo Derivative
,” Phys. D
, 460
, p. 134103
.10.1016/j.physd.2024.13410323.
Liang
, Y. J.
, Yue
, Y.
, and Magin
, R. L.
, 2022
, “Computation of the Inverse Mittag-Leffler Function and Its Application to Modeling Ultraslow Dynamics
,” Fractional Calculus Appl. Anal.
, 25
(2
), pp. 439
–452
.10.1007/s13540-022-00020-824.
Zarei
, A.
, 2015
, “Complex Dynamics in a 5-D Hyper-Chaotic Attractor With Four Wings, One Equilibrium and Multiple Chaotic Attractors
,” Nonlinear Dyn.
, 81
(1–2
), pp. 585
–605
.10.1007/s11071-015-2013-5Copyright © 2025 by ASME
You do not currently have access to this content.