Abstract

This paper centers on the finite-time control problem of the helicopter system in the midst of external disturbances, gain fluctuations, and actuator faults. Precisely, the finite-time boundedness and input–output finite-time stability are obtained concurrently to preclude huge undesirable values for both state and output, respectively, during specific transients. In particular, a particle swarm optimization setup is put forward for lowering the cost function and enhancing the overall reliability of the system. Furthermore, the fault-tolerant resilient control scheme is tailored to exhibit strong resistance to failures in the actuator and variations in the gain matrix. By blending the Lyapunov stability theory with the concept of finite time, we attain the essential requirements to ensure the stability of the closed-loop system over a finite span of time. Subsequently, the explicit methodology for obtaining the gain matrix is laid out pursuant to the established requirements. In particular, simulation results are presented to analyze the potential and significance of the devised control scheme.

References

1.
Cai
,
X.
,
Shi
,
K.
,
She
,
K.
,
Park
,
P.
,
Zhong
,
S.
,
Kwon
,
O.
, and
Yu
,
Y.
,
2023
, “
Event-Triggered Control Strategy for 2-Dof Helicopter System Under Dos Attacks
,”
IEEE Trans. Transp. Electrif.
,
9
(
2
), pp.
3240
3254
.10.1109/TTE.2022.3227086
2.
Zhang
,
H.
, and
Liu
,
J.
,
2021
, “
Event-Triggered Fuzzy Flight Control of a Two-Degree-of-Freedom Helicopter System
,”
IEEE Trans. Fuzzy Syst.
,
29
(
10
), pp.
2949
2962
.10.1109/TFUZZ.2020.3009755
3.
Liu
,
H.
,
Lu
,
G.
, and
Zhong
,
Y.
,
2013
, “
Robust LQR Attitude Control of a 3-DoF Laboratory Helicopter for Aggressive Maneuvers
,”
IEEE Trans. Ind. Electron.
,
60
(
10
), pp.
4627
4636
.10.1109/TIE.2012.2216233
4.
Zheng
,
B.
, and
Zhong
,
Y.
,
2011
, “
Robust Attitude Regulation of a 3-DoF Helicopter Benchmark: Theory and Experiments
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
660
670
.10.1109/TIE.2010.2046579
5.
Shen
,
H.
,
Hu
,
X.
,
Wang
,
J.
,
Cao
,
J.
, and
Qian
,
W.
,
2023
, “
Non-Fragile h Synchronization for Markov Jump Singularly Perturbed Coupled Neural Networks Subject to Double-Layer Switching Regulation
,”
IEEE Trans. Neural Networks Learn. Syst.
,
34
(
5
), pp.
2682
2692
.10.1109/TNNLS.2021.3107607
6.
Shen
,
H.
,
Zhang
,
Z.
,
Li
,
F.
, and
Yan
,
H.
,
2023
, “
Non-Fragile H∞ Control for Piecewise-Homogeneous Hidden Semi-Markov Lur'e Systems
,”
IEEE Trans. Circuits Syst. II: Express Briefs
, 71(1), pp.
306
310
.10.1109/TCSII.2023.3300096
7.
Li
,
X.
,
She
,
K.
,
Shi
,
K.
,
Cheng
,
J.
,
Zhong
,
S.
, and
Peng
,
Z.
,
2024
, “
Nonfragile Switched Sampled-Data Control for Ship Electric Propulsion Systems With Stochastic Actuator Failures: A Dual-Sided Looped Fuzzy Lyapunov Functional
,”
Fuzzy Sets Syst.
,
483
, p.
108914
.10.1016/j.fss.2024.108914
8.
Azarang
,
A.
,
Miri
,
M.
,
Kamaei
,
S.
, and
Asemani
,
M. H.
,
2018
, “
Nonfragile Fuzzy Output Feedback Synchronization of a New Chaotic System: Design and Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011008
.10.1115/1.4037416
9.
Kchaou
,
M.
,
Jerbi
,
H.
,
Toual
,
B.
, and
Kouzou
,
A.
,
2022
, “
Non-Fragile Mixed h/Passive-Based Asynchronous Sliding Mode Control for Nonlinear Singular Markovian Jump Systems
,”
Int. J. Syst. Sci.
,
53
(
3
), pp.
447
467
.10.1080/00207721.2021.1961912
10.
Wang
,
X.
,
Shao
,
Y.
,
Zhang
,
Z.
,
Shen
,
M.
, and
Karimi
,
H. R.
,
2023
, “
Data-Driven Fault-Tolerant Control for Nonlinear Systems With Output Saturation
,”
Chaos, Solitons Fractals
,
173
, p.
113626
.10.1016/j.chaos.2023.113626
11.
Wu
,
L.-B.
,
Park
,
J. H.
,
Guo
,
L.-D.
, and
Huang
,
S.-J.
,
2024
, “
Prescribed Performance Event-Triggered Fault-Tolerant Control of Uncertain Pure-Feedback Nonlinear Systems
,”
Int. J. Control
,
97
(
7
), pp.
1532
1541
.10.1080/00207179.2023.2214248
12.
Yu
,
Y.
,
Guo
,
J.
,
Chadli
,
M.
, and
Xiang
,
Z.
,
2023
, “
Distributed Adaptive Fuzzy Formation Control of Uncertain Multiple Unmanned Aerial Vehicles With Actuator Faults and Switching Topologies
,”
IEEE Trans. Fuzzy Syst.
,
31
(
3
), pp.
919
929
.10.1109/TFUZZ.2022.3193440
13.
Satheesh
,
T.
,
Aravinth
,
N.
,
Sakthivel
,
R.
, and
Panneerselvam
,
V.
,
2024
, “
Fault Alarm-Based Hybrid Control for Interval Type-2 Fuzzy Cyber-Physical Systems
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
71
(
4
), pp.
2154
2158
.10.1109/TCSII.2023.3335088
14.
Yao
,
W.
,
Su
,
L.
,
Wang
,
Y.
,
Wang
,
J.
, and
Shen
,
H.
,
2024
, “
Extended Dissipative Control for Interval Type-2 TS Fuzzy Markov Jump Systems Subject to Actuator Faults
,”
Cybern. Syst.
,
55
(
7
), pp.
1537
1561
.10.1080/01969722.2022.2138942
15.
Jerbi
,
H.
,
Kchaou
,
M.
,
Alshammari
,
O.
,
Abassi
,
R.
, and
Popescu
,
D.
,
2022
, “
Observer-Based Feedback Control of Interval-Valued Fuzzy Singular System With Time-Varying Delay and Stochastic Faults
,”
Int. J. Comput. Commun. Control
,
17
(
6
), pp.
3894
3904
.10.15837/ijccc.2022.6.4957
16.
Jiang
,
T.
,
Zhang
,
Y.
,
Park
,
J. H.
,
Cai
,
X.
, and
Shi
,
K.
,
2023
, “
Finite-Time Boundedness of Networked Control Systems Via Hybrid Predictive Control Based on Cloud Storage Method
,”
Inf. Sci.
,
622
, pp.
1092
1108
.10.1016/j.ins.2022.12.006
17.
Cheng
,
J.
,
Park
,
J. H.
, and
Wu
,
Z.-G.
,
2023
, “
Finite-Time Control of Markov Jump Lur'e Systems With Singular Perturbations
,”
IEEE Trans. Autom. Control
,
68
(
11
), pp.
6804
6811
.10.1109/TAC.2023.3238296
18.
Zhang
,
C.
,
Zong
,
G.
,
Su
,
S. F.
,
Qi
,
W.
, and
Chadli
,
M.
,
2023
, “
Finite-Time Event-Triggered Stabilization for Discrete-Time Fuzzy Markov Jump Singularly Perturbed Systems
,”
IEEE Trans. Cybern.
,
53
(
7
), pp.
4511
4520
.10.1109/TCYB.2022.3207430
19.
Razmjooei
,
H.
, and
Shafiei
,
M. H.
,
2020
, “
Partial Finite-Time Stabilization of Perturbed Nonlinear Systems Based on the Novel Concept of Nonsingular Terminal Sliding Mode Method
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
2
), p.
021005
.10.1115/1.4045632
20.
Yan
,
H.
,
Tian
,
Y.
,
Li
,
H.
,
Zhang
,
H.
, and
Li
,
Z.
,
2019
, “
Input–Output Finite-Time Mean Square Stabilization of Nonlinear Semi-Markovian Jump Systems
,”
Automatica
,
104
, pp.
82
89
.10.1016/j.automatica.2019.02.024
21.
Amato
,
F.
,
Carannante
,
G.
,
De Tommasi
,
G.
, and
Pironti
,
A.
,
2012
, “
Input–Output Finite-Time Stability of Linear Systems: Necessary and Sufficient Conditions
,”
IEEE Trans. Autom. Control
,
57
(
12
), pp.
3051
3063
.10.1109/TAC.2012.2199151
22.
Qi
,
W.
,
Zong
,
G.
, and
Ki Ahn
,
C.
,
2022
, “
Input–Output Finite-Time Asynchronous Smc for Nonlinear Semi-Markov Switching Systems With Application
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(
8
), pp.
5344
5353
.10.1109/TSMC.2021.3122965
23.
Guo
,
Y.
,
Yao
,
Y.
,
Wang
,
S.
,
Ma
,
K.
,
Liu
,
K.
, and
Guo
,
J.
,
2014
, “
Input–Output Finite-Time Stabilization of Linear Systems With Finite-Time Boundedness
,”
ISA Trans.
,
53
(
4
), pp.
977
982
.10.1016/j.isatra.2014.05.018
24.
Charfeddine
,
S.
,
Alharbi
,
H.
,
Jerbi
,
H.
,
Kchaou
,
M.
,
Abbassi
,
R.
, and
Leiva
,
V.
,
2022
, “
A Stochastic Optimization Algorithm to Enhance Controllers of Photovoltaic Systems
,”
Mathematics
,
10
(
12
), p.
2128
.10.3390/math10122128
25.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
, Perth, WA, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
26.
Zhao
,
B.
,
Luo
,
F.
,
Lin
,
H.
, and
Liu
,
D.
,
2021
, “
Particle Swarm Optimized Neural Networks Based Local Tracking Control Scheme of Unknown Nonlinear Interconnected Systems
,”
Neural Networks
,
134
, pp.
54
63
.10.1016/j.neunet.2020.09.020
27.
Yang
,
Y.
,
Niu
,
Y.
, and
Reza Karimi
,
H.
,
2022
, “
Dynamic Learning Control Design for Interval Type-2 Fuzzy Singularly Perturbed Systems: A Component-Based Event-Triggering Protocol
,”
Int. J. Robust Nonlinear Control
,
32
(
5
), pp.
2518
2535
.10.1002/rnc.5661
28.
Wang
,
J.
,
Peng
,
H.
,
Tu
,
M.
,
Pérez‐Jiménez
,
J. M.
, and
Shi
,
P.
,
2016
, “
A Fault Diagnosis Method of Power Systems Based on an Improved Adaptive Fuzzy Spiking Neural p Systems and PSO Algorithms
,”
Chin. J. Electron.
,
25
(
2
), pp.
320
327
.10.1049/cje.2016.03.019
29.
Jiang
,
M.
,
Luo
,
Y. P.
, and
Yang
,
S. Y.
,
2007
, “
Stochastic Convergence Analysis and Parameter Selection of the Standard Particle Swarm Optimization Algorithm
,”
Inf. Process. Lett.
,
102
(
1
), pp.
8
16
.10.1016/j.ipl.2006.10.005
30.
Lin
,
H.
,
Zhao
,
B.
,
Liu
,
D.
, and
Alippi
,
C.
,
2020
, “
Data-Based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks
,”
IEEE/CAA J. Autom. Sin.
,
7
(
4
), pp.
954
964
.10.1109/JAS.2020.1003225
31.
Estevez
,
J.
,
Lopez-Guede
,
J. M.
, and
Graña
,
M.
,
2016
, “
Particle Swarm Optimization Quadrotor Control for Cooperative Aerial Transportation of Deformable Linear Objects
,”
Cybern. Syst.
,
47
(
1–2
), pp.
4
16
.10.1080/01969722.2016.1128759
You do not currently have access to this content.