Abstract

The vibration reduction problem of a nonlinear energy sink (NES) with piecewise linear stiffness is investigated in this work. The NES can effectively assist in vibration reduction of the primary system, while piecewise linear stiffness can effectively enhance the damping effect and control vibration of the NES. An experimental setup for the NES system with piecewise linear stiffness is designed, and control equations are established using the Newton's Second Law. Based on experimental data, system parameters are obtained, and the steady-state response of the system is calculated using the incremental harmonic balance (IHB) method. Through stability analysis, the existence of quasi-periodic and chaotic responses in the system's vibration response are discovered. The results obtained from the IHB method are validated using numerical method and experimental studies, showing good accuracy. The energy absorption efficiency of the NES with piecewise linear stiffness is discussed, and effects of different parameters of the NES on the system are studied in detail to optimize the performance of the NES. Results indicate that nonlinear stiffness and piecewise linear stiffness, along with controlling a certain value of the NES damping and mass, can achieve better vibration control.

References

1.
Wonsul
,
K.
,
Yukio
,
T.
,
Akihito
,
Y.
, and
Jin-Hak
,
Y.
,
2017
, “
Interference Effects of an Adjacent Tall Building With Various Sizes on Local Wind Forces Acting on a Tall Building
,”
Adv. Struct. Eng.
,
21
(
10
), pp.
1469
1481
.10.1177/1369433217750170
2.
Feng
,
G.
, and
Jen
,
K. C.
,
2020
, “
Simulation Analysis of a Bridge With a Nonlinear Tuned Mass Damper Using Incremental Harmonic Balance Method
,”
Experimental Vibration Analysis for Civil Structures
,
CRC Press
, Boca Raton, FL, pp.
123
133
.
3.
Nair
,
S. R.
,
2014
, “
Study and Comparison of Aerodynamic Forces on an Aircraft and Suspension Bridge
,”
IOSR J. Eng.
,
4
(
4
), pp.
43
46
.10.9790/3021-04454346
4.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Netherlands
, Dordrecht, The Netherlands.
5.
Sapsis
,
T. P.
,
Dane Quinn
,
D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
.10.1115/1.4005005
6.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large‐Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
.10.1002/eqe.2424
7.
Wierschem
,
N. E.
,
Luo
,
J.
,
Al-Shudeifat
,
M.
,
Hubbard
,
S.
,
Ott
,
R.
,
Fahnestock
,
L. A.
,
Quinn
,
D. D.
, etal,
2014
, “
Experimental Testing and Numerical Simulation of a Six-Story Structure Incorporating Two-Degree-of-Freedom Nonlinear Energy Sink
,”
J. Struct. Eng.
,
140
(
6
), p.
04014027
.10.1061/(asce)st.1943-541x.0000978
8.
Vaurigaud
,
B.
,
Savadkoohi
,
A. T.
, and
Lamarque
,
C.
,
2011
, “
Efficient Targeted Energy Transfer With Parallel Nonlinear Energy Sinks: Theory and Experiments
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041005
.10.1115/1.4003687
9.
Li
,
W.
,
Wierschem
,
N. E.
,
Li
,
X.
,
Yang
,
T.
, and
Brennan
,
M. J.
,
2019
, “
Numerical Study of a Single-Sided Vibro-Impact Track Nonlinear Energy Sink Considering Horizontal and Vertical Dynamics
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061013
.10.1115/1.4044486
10.
Silva
,
C. E.
,
Maghareh
,
A.
,
Tao
,
H.
,
Dyke
,
S. J.
, and
Gibert
,
J.
,
2019
, “
Evaluation of Energy and Power Flow in a Nonlinear Energy Sink Attached to a Linear Primary Oscillator
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061012
.10.1115/1.4044450
11.
Al-Shudeifat
,
M. A.
,
2017
, “
Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
024503
.10.1115/1.4035479
12.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.10.1115/1.2198546
13.
Gendelman
,
O. V.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2006
, “
Quasiperiodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
,
294
(
4–5
), pp.
651
662
.10.1016/j.jsv.2005.11.031
14.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(
1/3
), pp.
237
253
.10.1023/A:1012967003477
15.
Zang
,
J.
,
Zhang
,
Y. W.
,
Ding
,
H.
,
Yang
,
T. Z.
, and
Chen
,
L. Q.
,
2019
, “
The Evaluation of a Nonlinear Energy Sink Absorber Based on the Transmissibility
,”
Mech. Syst. Signal Process.
,
125
, pp.
99
122
.10.1016/j.ymssp.2018.05.061
16.
Bellizzi
,
S.
,
Côte
,
R.
, and
Pachebat
,
M.
,
2013
, “
Responses of a Two Degree-of-Freedom System Coupled to a Nonlinear Damper Under Multi-Forcing Frequencies
,”
J. Sound Vib.
,
332
(
7
), pp.
1639
1653
.10.1016/j.jsv.2012.11.014
17.
Wu
,
T. M.
,
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2024
, “
Quasi-Periodic Oscillation Characteristics of a Nonlinear Energy Sink System Under Harmonic Excitation
,”
J. Sound Vib.
,
572
, p.
118143
.10.1016/j.jsv.2023.118143
18.
Noah
,
S. T.
, and
Kim
,
Y. B.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
545
553
.10.1115/1.2897218
19.
Zhang
,
W.-S.
, and
Lau
,
S. L.
,
1992
, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
153
160
.10.1115/1.2899421
20.
Chatterjee
,
S.
,
Mallik
,
A. K.
, and
Ghosh
,
A.
,
1996
, “
Periodic Response of Piecewise Non-Linear Oscillators Under Harmonic Excitation
,”
J. Sound Vib.
,
191
(
1
), pp.
129
144
.10.1006/jsvi.1996.0110
21.
Xu
,
L.
,
Lu
,
M. W.
, and
Cao
,
Q.
,
2003
, “
Bifurcation and Chaos of a Harmonically Excited Oscillator With Both Stiffness and Viscous Damping Piecewise Linearities by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
264
(
4
), pp.
873
882
.10.1016/S0022-460X(02)01194-X
22.
Cao
,
Q.
,
Xu
,
L.
,
Djidjeli
,
K.
,
Price
,
W. G.
, and
Twizell
,
E. H.
,
2001
, “
Analysis of Period-Doubling and Chaos of a Non-Symmetric Oscillator With Piecewise-Linearity
,”
Chaos, Solitons Fractals
,
12
(
10
), pp.
1917
1927
.10.1016/S0960-0779(00)00155-7
23.
Min
,
C. Q.
,
Dahlmann
,
M.
, and
Sattel
,
T.
,
2021
, “
Steady State Response Analysis for a Switched Stiffness Vibration Control System Based on Vibration Energy Conversion
,”
Nonlinear Dyn.
,
103
(
1
), pp.
239
254
.10.1007/s11071-020-06147-8
24.
Wang
,
X.
,
Geng
,
X. F.
,
Mao
,
X. Y.
,
Ding
,
H.
,
Jing
,
X. J.
, and
Chen
,
L. Q.
,
2022
, “
Theoretical and Experimental Analysis of Vibration Reduction for Piecewise Linear System by Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
172
, p.
109001
.10.1016/j.ymssp.2022.109001
25.
Geng
,
X. F.
,
Ding
,
H.
,
Mao
,
X. Y.
, and
Chen
,
L. Q.
,
2021
, “
Nonlinear Energy Sink With Limited Vibration Amplitude
,”
Mech. Syst. Signal Process.
,
156
, p.
107625
.10.1016/j.ymssp.2021.107625
26.
Al-Shudeifat
,
M. A.
, and
Saeed
,
A. S.
,
2022
, “
Periodic Motion and Frequency Energy Plots of Dynamical Systems Coupled With Piecewise Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
4
), p.
041005
.10.1115/1.4053509
27.
Li
,
X.
,
Liu
,
K.
,
Xiong
,
L.
, and
Tang
,
L.
,
2021
, “
Development and Validation of a Piecewise Linear Nonlinear Energy Sink for Vibration Suppression and Energy Harvesting
,”
J. Sound Vib.
,
503
, p.
116104
.10.1016/j.jsv.2021.116104
28.
Dou
,
J.
,
Yao
,
H.
,
Li
,
H.
,
Cao
,
Y.
, and
Liang
,
S.
,
2023
, “
Vibration Suppression of Multi-Frequency Excitation Using Cam-Roller Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
111
(
13
), pp.
11939
11964
.10.1007/s11071-023-08477-9
29.
Friedmann
,
P.
, and
Silverthorn
,
L.
,
1974
, “
Aeroelastic Stability of Periodic Systems With Application to Rotor Blade Flutter
,”
AIAA
Paper No. 74-417.10.2514/6.74-417
30.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T.
,
1977
, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
,
11
(
7
), pp.
1117
1136
.10.1002/nme.1620110708
31.
Wei
,
Y. M.
,
Peng
,
Z. K.
,
Dong
,
X. J.
,
Zhang
,
W. M.
, and
Meng
,
G.
,
2017
, “
Mechanism of Optimal Targeted Energy Transfer
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011007
.10.1115/1.4034929
You do not currently have access to this content.