Abstract

This work proposed a new Hermite triangular thin shell element based on the absolute nodal coordinate formulation to model thin shells with complex curved surfaces. Three techniques are adopted to enhance its universality and efficiency. First, local numerical curvilinear coordinates are used on each node for those curved surfaces whose global curvilinear coordinates cannot be obtained analytically, and the Lie group interpolation is used for obtaining the curvilinear coordinates on the non-nodal domain. Second, the slope vector of the element is obtained by cross-producing the two gradient vectors only on each node; but interpolated inside the element to ensure its continuity. Additionally, this processing maintains the linear relationships between the shape functions and nodal coordinates, resulting in constant elastic tensors. Third, the enhanced assumed strains (EAS) and the assumed natural strains (ANS) methods are adopted respectively to accelerate the convergence speed and avoid locking problems of the element. Several numerical examples show that this new element is universal for irregularly curved surfaces without locking problems. In addition, the efficiency is much higher than the traditional triangular shell element.

References

1.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
2.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
3.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
1
), pp.
34
51
.10.1177/2041306810392115
4.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Extended Digital Nomenclature Code for Description of Complex Finite Elements and Generation of New Elements
,”
Mech.-Based Des. Struct. Mach.
,
39
(
2
), pp.
229
252
.10.1080/15397734.2011.550858
5.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
,
Lee
,
S.
, and
Kim
,
C.-W.
,
2013
, “
A Triangular Plate Element 2343 Using Second-Order Absolute-Nodal-Coordinate Slopes: Numerical Computation of Shape Functions
,”
Nonlinear Dyn.
,
74
(
3
), pp.
769
781
.10.1007/s11071-013-1004-7
6.
Ren
,
H.
,
2015
, “
Fast and Robust Full-Quadrature Triangular Elements for Thin Plates/Shells With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051018
.10.1115/1.4030212
7.
Ren
,
H.
, and
Fan
,
W.
,
2023
, “
An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes
,”
Thin-Walled Struct.
,
182
(
B
), p.
110257
.10.1016/j.tws.2022.110257
8.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2008
, “
Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041012
.10.1115/1.2960479
9.
Yamashita
,
H.
,
Valkeapää
,
A. I.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012
.10.1115/1.4028657
10.
Simo
,
J. C.
, and
Rifai
,
M.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
.10.1002/nme.1620290802
11.
Dvorkin
,
E. N.
, and
Bathe
,
K.-J.
,
1984
, “
A Continuum Mechanics-Based Four-Node Shell Element for General Non-Linear Analysis
,”
Eng. Comput.
,
1
(
1
), pp.
77
88
.10.1108/eb023562
12.
Bathe
,
K.-J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements–the Use of Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
.10.1002/nme.1620220312
13.
Tang
,
Y.
,
Matikainen
,
M. K.
, and
Mikkola
,
A.
,
2024
, “
The Improvements of New Absolute Nodal Coordinate Formulation Based Continuum Beam Elements in Convergence, Accuracy and Efficiency
,”
Eur. J. Mech.-A/Solids
,
105
, p.
105252
.10.1016/j.euromechsol.2024.105252
14.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization Plate Finite Elements Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.10.1023/A:1024553708730
15.
Shabana
,
A. A.
, and
Maqueda
,
L. G.
,
2008
, “
Slope Discontinuities in the Finite Element Absolute Nodal Coordinate Formulation: Gradient Deficient Elements
,”
Multibody Syst. Dyn.
,
20
(
3
), pp.
239
249
.10.1007/s11044-008-9111-9
16.
Shabana
,
A. A.
,
2011
, “
General Method for Modeling Slope Discontinuities and t-Sections Using ANCF Gradient Deficient Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
024502
.10.1115/1.4002339
17.
Yan
,
D.
,
Liu
,
C.
,
Tian
,
Q.
,
Zhang
,
K.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2013
, “
A New Curved Gradient Deficient Shell Element of Absolute Nodal Coordinate Formulation for Modeling Thin Shell Structures
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
153
164
.10.1007/s11071-013-0955-z
18.
Chang
,
H.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
Mikkola
,
A.
,
2015
, “
Three New Triangular Shell Elements of ANCF Represented by Bézier Triangles
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
321
351
.10.1007/s11044-015-9462-y
19.
Wang
,
T.
,
2020
, “
Two New Triangular Thin Plate/Shell Elements Based on the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
99
(
4
), pp.
2707
2725
.10.1007/s11071-019-05448-x
20.
Taylor
,
M.
,
Serban
,
R.
, and
Negrut
,
D.
,
2023
, “
Implementation Implications on the Performance of ANCF Simulations
,”
Int. J. Non-Linear Mech.
,
149
, p.
104328
.10.1016/j.ijnonlinmec.2022.104328
21.
Armstrong
,
M. A.
,
1983
,
Basic Topology
,
Springer Science & Business Media
, New York, pp.
1
4
.
22.
Hameiri
,
E.
, and
Shimshoni
,
I.
,
2003
, “
Estimating the Principal Curvatures and the Darboux Frame From Real 3-D Range Data
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
33
(
4
), pp.
626
637
.10.1109/TSMCB.2003.814304
23.
Valkeapää
,
A. I.
,
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
On the Use of Elastic Middle Surface Approach in the Large Deformation Analysis of Moderately Thick Shell Structures Using Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
80
(
3
), pp.
1133
1146
.10.1007/s11071-015-1931-6
24.
Taylor
,
M.
,
Serban
,
R.
, and
Negrut
,
D.
,
2023
, “
An Efficiency Comparison of Different ANCF Implementations
,”
Int. J. Non-Linear Mech.
,
149
, p.
104308
.10.1016/j.ijnonlinmec.2022.104308
25.
Xu
,
Q.
, and
Liu
,
J.
,
2022
, “
An Improved Dynamic Formulation for Nonlinear Response Analysis of Thin Soft Silicone Plates With Large Deflection
,”
Thin-Walled Struct.
,
176
, p.
109333
.10.1016/j.tws.2022.109333
You do not currently have access to this content.