Gravitational wave detectors aim to detect strain perturbations of space-time on the order of 10211022 at frequencies between 1Hz and a few kHz. This space-time strain, integrated over kilometer scale interferometers, will induce movements of suspended mirrors on the order of 10181019m. Seismic motion in this frequency band varies between 106m and 1012m. Required seismic attenuation factors, as large as 1012, by far exceed the performance of motion sensors, and are only obtained by means of a chain of passive attenuators. High quality springs in configurations yielding nonlinear response are used to generate attenuation at low frequency. Similarly, nonlinear mechanisms are used in the horizontal direction. A description of some of these systems and some of the technical challenges that they involve is presented.

1.
Geng
,
Z. K.
,
Hamilton
,
W. O.
,
Johnson
,
W. W.
,
Mauceli
,
E.
,
Merkowitz
,
S.
,
Morse
,
A.
, and
Solomonson
,
N.
, 1995, “
Operation of the ALLEGRO Detector at LSU
,”
Proceedings 1st Edoardo Amaldi Conference on Gravitational Wave Experiments
,
E.
Coccia
,
G.
Pizzella
, and
F.
Ronga
, eds.,
World Scientific Publishing Co.
,
Singapore
, Eduardo Amaldi Workshop on Gravitational Wave Detectors, Frascati Italy, June 1994.
2.
Astone
,
P.
,
et al.
, 1993, “
Long-Term Operation of the Rome “Explorer” Cryogenic Gravitational Wave Detector
,”
Phys. Rev. D
0556-2821,
47
, pp.
362
375
.
3.
Astone
,
P.
,
et al.
, 2003, “
Increasing the Bandwidth of Resonant Gravitational Antennas: The Case of Explorer
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
111101
.
4.
Astone
,
P.
,
et al.
, 1997, “
The Gravitational Wave Detector NAUTILUS Operating at T=0.1K
,”
Astropart. Phys.
0927-6505,
7
, p.
231
.
5.
Blair
,
D. G.
,
Ivanov
,
E. N.
,
Tobar
,
M. E.
,
Turner
,
P. J.
,
Van Kann
,
F.
, and
Heng
,
I. S.
, 1995, “
High Sensitivity Gravitational Wave Antenna With Parametric Transducer Readout
,
Phys. Rev. Lett.
0031-9007,
74
(
11
), pp.
1908
1911
.
6.
Cerdonio
,
M.
,
et al.
, 1997, “
The Ultracryogenic Gravitational Wave Detector AURIGA
,”
Class. Quantum Grav.
0264-9381,
14
, p.
1491
.
7.
Abbott
,
B.
,
et al.
2004, “
Detector Description and Performance for the First Coincidence Observations Between LIGO and GEO
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
517
, pp.
154
179
.
8.
Ando
,
M.
,
et al.
, 2001, “
Stable Operation of a 300‐m Laser Interferometer With Sufficient Sensitivity to Detect Gravitational-Wave Events Within Our Galaxy
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
3950
3954
.
9.
Caron
,
B.
,
et al.
, 1997, “
The Virgo Interferometer
,”
Class. Quantum Grav.
0264-9381,
14
, pp.
1461
1469
.
10.
Danzmann
,
K.
, and
Rüdiger
,
A.
, 2003, “
LISA Technology–Concept, Status, Prospects
,”
Class. Quantum Grav.
0264-9381,
20
, p.
S1
.
11.
Beccaria
,
M.
,
et al.
, 1997, “
Extending the Virgo Gravitational Wave Detection Band Down to a few Hz, Metal Blade Springs and Magnetic Antisprings
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
394
, pp.
397
408
.
12.
DeSalvo
,
R.
,
et al.
, 1997–1999, “
Performance of an Ultra-Low Frequency Vertical Pre-Isolator for the Virgo Seismic Attenuation Chains
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
420
, pp.
316
335
.
13.
Minus K Technology, 420 S. Hindry Ave., Unit E Inglewood, CA 90301, http://www.minusk.com/http://www.minusk.com/
14.
Winterflood
,
J.
,
Zebing
,
Z.
, and
Blair
,
D.
, 1999, “
Ultra Low Residual Motion Suspension System
,”
Gravitational Wave Detection II, Proceedings of the 2nd TAMA International Workshop on GW Detection
, National Olympus Memorial Youth Center, Tokyo, Japan, October 19–22,
Universal Academy Press
, Tokyo, pp.
301
310
.
15.
Platus
,
D. L.
, 1999, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Proc. SPIE
0277-786X,
3786
, pp.
98
105
.
16.
Cella
,
G.
,
et al.
, 2005, “
Monolithic Geometric Anti-Spring Blades
,”
Nucl. Instr. and Meth.
,
540
(
2–3
), pp.
502
551
.
17.
Cella
,
G.
,
et al.
, 2002, “
Seismic Attenuation Performance of the First Prototype of a Geometric Anti-Spring Filter
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
487
, pp.
652
660
.
18.
Sannibale
,
V.
,
et al.
, 2007, “
The Monolithic Geometric Anti Spring Filters, Design, Construction and Performances
,” LIGO Document No. LIGO-P040041-00-D, in preparation.
19.
DeSalvo
,
R.
,
et al.
, 2005, “
Study of Quality Factor and Hysteresis Associated with the State-of-the-Art Passive Seismic Isolation System for Gravitational Wave Interferometric Detectors
,”
Nucl. Instr. and Meth.
,
538
(
1–3
), pp.
526
537
.
20.
Mantovani
,
M.
, and
DeSalvo
,
R.
, 2004, “
One Hertz Seismic Attenuation for Low Frequency Gravitational Waves Interferometers
,”
Nucl. Instr. and Meth.
,
554
(
1-3
), pp.
546
554
.
21.
22.
Tariq
,
H.
,
et al.
, 2002, “
The Linear Variable Differential Transformer (LVDT) Position Sensor for Gravitational Wave Interferometer Low-Frequency Controls
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
489
, pp.
570
576
.
23.
Wang
,
C.
,
et al.
, 2002, “
Constant Force Actuator for Gravitational Wave Detector’s Seismic Attenuation Systems (SAS)
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
489
, pp.
563
569
.
24.
Losurdo
,
G.
,
et al.
, 1999, “
An Inverted Pendulum Preisolator Stage for the Virgo Suspension System
,”
Rev. Sci. Instrum.
0034-6748,
70
(
N5
), pp.
2507
2515
.
25.
Marka
,
S.
,
et al.
, 2002, “
Anatomy of the TAMA SAS Seismic Attenuation System
,”
Class. Quantum Grav.
0264-9381,
19
, pp.
1605
1614
.
26.
Ballardin
,
G.
,
et al.
, 2001, “
Measurement of the Virgo Superattenuator Performance for Seismic Noise Suppression
,”
Rev. Sci. Instrum.
0034-6748,
72
(
N9
), pp.
3643
3652
.
28.
Takamori
,
A.
,
et al.
, 2002, “
Mirror Suspension System for the TAMA SAS
,”
Class. Quantum Grav.
0264-9381,
19
pp.
1615
1621
.
29.
Bertolini
,
A.
, private communication.
30.
DeSalvo
,
R.
, 2004, “
The Deep Fall Back Solution. Passive External Pre Isolation and Stack Damping for LIGO
,” LIGO Document No. T040197-00-R, 2004, at http://admdbsrv.ligo.caltech.edu/dcc/http://admdbsrv.ligo.caltech.edu/dcc/
31.
Bronowicki
,
A. J.
,
et al.
, 2003, “
Dual Stage Passive Vibration Isolation for Optical Interferometry Missions
,” Proc. SPIE,
Interferometry in Space
,
M.
Shao
, ed., Vol.
4852
, pp.
753
763
.
32.
Effler
,
A. M.
, 2007, Caltech, work in progress.
33.
Agresti
,
J.
,
Virdone
,
N.
, and
Tarallo
,
M.
, 2007, Caltech, work in progress.
35.
HAM SAS Report in preparation
36.
Abbott
,
R.
,
et al.
, 2002, “
Seismic Isolation for Advanced LIGO
,”
Class. Quantum Grav.
0264-9381,
19
, pp.
1591
1597
.
37.
Abbott
,
R.
,
et al.
, 2004, “
Seismic Isolation Enhancements for Initial and Advanced LIGO
,”
Class. Quantum Grav.
0264-9381,
21
, pp.
S915
S921
.
38.
Robertson
,
N.
,
et al.
, 2004, “
Seismic Isolation and Suspension Systems for Advanced LIGO
,”
Proc. SPIE
0277-786X,
5500
, pp.
81
91
.
39.
Except, of course, when the source of excitation is internal to the system and active controls and/or internal damping are the only answer.
40.
As an example the SIM planet search mission has used passive isolator to support their interferometric optical bench, http://planetquest.jpl.nasa.gov/SIM/sim_index.cfmhttp://planetquest.jpl.nasa.gov/SIM/sim_index.cfm
42.
Effler
,
A.
, 2007, Caltech, work in progress.
43.
A.
Stochino
, Doctoral thesis, Dipartimento di Fisica “Enrico Fermi”, Universitá di Pisa, Largo Bruno Pontecorvo, I-56 127 Pisa, July 2007, LIGO Document No. P070083, available at http://admdbsrv.ligo.caltech.edu/doc/
You do not currently have access to this content.