Friction is a difficult phenomenon to model and simulate. One promising friction model is the LuGre model, which captures key frictional behavior from experiments and from other friction models. While displaying many modeling advantages, the LuGre model of friction can result in numerically stiff system dynamics. In particular, the LuGre friction model exhibits very slow dynamics during periods of sticking and very fast dynamics during periods of slip. This paper investigates the best simulation strategies for application to dynamic systems with LuGre friction. Several simulation strategies are applied including the explicit Runge–Kutta, implicit Trapezoidal, and implicit Radau-IIA schemes. It was found that both the Runge–Kutta and Radau-IIA methods performed well in simulating the system. The Runge–Kutta method had better accuracy, but the Radau-IIA method required less integration steps.

1.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
2.
Mitiguy
,
P. C.
, and
Banerjee
,
A. K.
, 1999, “
Efficient Simulations of Motion Involving Coulomb Friction
,”
J. Guid. Control Dyn.
0731-5090,
22
(
1
), pp.
78
86
.
3.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics with Unilateral Contact
,
Wiley
, New York, NY.
4.
Ferri
,
A. A.
, and
Heck
,
B. S.
, 1997, “
Analysis of Stick-Slip Motion in Coulomb Damped Systems Using Variable Structure System Theory
,”
Proceedings of the 1997 ASME Design and Technical Conferences
, Sacramento, CA, September
14
17
.
5.
Whiteman
,
W. E.
, and
Ferri
,
A. A.
, 1997, “
Multi-Mode Analysis of Beam-Like Structures Subjected to Displacement-Dependent Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
201
(
3
), pp.
403
418
.
6.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
(
1
), pp.
100
103
.
7.
Iwan
,
W. D.
, 1966, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
893
900
.
8.
Iwan
,
W. D.
, 1967, “
On a Class of Models for the Yielding Behavior of Continuous and Composite Systems
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
612
617
.
9.
Ferri
,
A. A.
, 1995, “
Friction Damping and Isolation Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
117B
, pp.
196
206
.
10.
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
, 1996, “
Modelling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
193
(
2
), pp.
511
523
.
11.
Quinn
,
D. D.
, and
Segalman
,
D. J.
, 2005, “
Using Series-Series Iwan-Type Models for Understanding Joint Dynamics
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
666
673
.
12.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2004, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
0022-460X,
273
, pp.
249
276
.
13.
Dahl
,
P. R.
, 1976, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
0001-1452,
14
,
1675
1682
.
14.
Gaul
,
L.
, and
Nitsche
,
R.
, 2001, “
The Role of Friction in Mechanical Joints
,”
Appl. Mech. Rev.
0003-6900,
54
(
2
), pp.
93
106
.
15.
Valanis
,
K. C.
, 1971, “
A Theory of Viscoplasticity Without a Yield Surface
,”
Arch. Mech.
0373-2029,
23
(
4
), pp.
171
191
.
16.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems with Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
17.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganesman
,
C. G.
, and
Prajogo
,
T.
, 2000, “
An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
0018-9286
45
(
4
), pp.
675
686
.
18.
Lampaert
,
V.
,
Swevers
,
J.
, and
Al-Bender
,
F.
, 2002, “
Modification of the Leuven Integrated Friction Model Structure
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
4
), pp.
683
687
.
19.
Haessig
,
D. A.
, Jr.
, and
Friedland
,
B.
, 1991, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
354
362
.
20.
Kokotovic
,
P.
,
Khalil
,
H.
, and
O’Reilly
,
J.
, 1986,
Singular Perturbation Methods in Control: Analysis and Design
,
Academic
, London, UK.
21.
Forsythe
,
G.
,
Malcolm
,
M.
, and
Moler
,
C.
, 1977,
Computer Methods for Mathematical Computations
,
Prentice-Hall
, Englewood Cliffs, NJ.
22.
Kahaner
,
D.
,
Moler
,
C.
, and
Nash
,
S.
, 1989,
Numerical Methods and Software
,
Prentice-Hall
, Englewood Cliffs, NJ.
23.
Faires
,
J. D.
, and
Burden
,
R.
, 1998,
Numerical Methods
,
2nd ed.
,
Brooks/Cole Publishing Co.
, Pacific Grove, CA.
24.
Hairer
,
E.
, and
Wanner
,
G.
, 1991,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
, Berlin, Germany.
25.
Hairer
,
E.
, and
Wanner
,
G.
, 1999, “
Stiff Differential Equations Solved by Radau Methods
,”
J. Comput. Appl. Math.
0377-0427,
111
, pp.
93
111
.
You do not currently have access to this content.