Detailed bifurcation pattern and stability structure is studied in a modified predator–prey system, with nonmonotonic response function. It is observed that almost all the parameters of the system have a positive influence as far as bifurcation is concerned. The analysis is done with the help of the package MATCONT. In the second stage of the analysis the detailed structure of the normal form is obtained after the corresponding position of Hopf bifurcation and Bogdanov–Takens bifurcation are identified with the help of a modified approach recently proposed by Kuznetsov (1995, Elements of Bifurcation Theory, Springer, New York, Chap. 8). It is important to note that the positions of Hopf and Bogdanov–Taken bifurcation as obtained from the analytic studies in this approach coincides exactly with those obtained from MATCONT.

1.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1990,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
2.
Krauskop
,
B.
, 1994, “
Bifurcations Sequences at 14 Resonance: An Inventory
,”
Nonlinearity
0951-7715,
7
, pp.
1073
1091
.
3.
Bazykin
,
A. D.
,
Berezovskaya
,
F. S.
,
Denisov
,
G.
, and
Kuznetsov
,
Yu. A.
, 1981, “
The Influence of Predator Saturation Effect and Competition among Predators on Predator–Prey System Dynamics
,”
Ecol. Modell.
0304-3800,
14
, pp.
39
57
.
4.
Hofbauer
,
J.
, and
So
,
J. W.-H.
, 1990,
”Multiple Limit Cycles for Predator–Prey Models
,”
Math. Biosci.
0025-5564,
99
, pp.
71
75
.
5.
Zhu
,
H.
,
Campbell
,
S. A.
, and
Wolkowicz
,
G.
, 2002, “
Bifurcation Analysis of a Predator–Prey Systems with Nonmonotonic Function Response
,”
SIAM J. Appl. Math.
0036-1399,
63
, pp.
636
682
.
6.
Kuang
,
Y.
, 1988, “
Nonuniquencess of Limit Cycles of Gause-Type Predator–Prey Systems
,”
Appl. Anal.
0003-6811,
29
, pp.
269
287
.
7.
Wrzosek
,
D. M.
, 1990, “
Limit Cycles in Predator–Prey Models
,”
Math. Biosci.
0025-5564,
98
, pp.
1
12
.
8.
Ruan
,
S.
, and
Xiao
,
D.
, 2001, “
Global Analysis in a Predator–Prey System with Nonmonotonic Functional Response
,”
SIAM J. Appl. Math.
0036-1399,
61
, pp.
1445
1472
.
9.
Broer
,
H. W.
,
Naudot
,
V.
,
Roussarie
,
R.
, and
Saleh
,
K.
, 2005, “
Bifurcations of a Predator–Prey Model with Non-Monotonic Response Function
,”
J. Struct. Constr. Eng.
1340-4202,
341
, pp.
601
604
.
10.
Broer
,
H. W.
,
Naudot
,
V.
,
Roussarie
,
R.
, and
Saleh
,
K.
, 2006, “
A Predator–Prey Model with Nonmonotonic Response Function
,”
Regular Chaotic Dyn.
,
11
(
2
), pp.
155
165
.
11.
Andrews
,
J. F.
, 1968, “
A Mathematical Model for the Continuous of Microorganisms Utilizing Inhibitory Substrates
,”
Biotechnol. Bioeng.
0006-3592,
10
, pp.
707
723
.
12.
Boon
,
B.
,
Landelout
,
H.
, 1962, “
Kinetics of Nitrite Oxidation by Nitrobacter Winogradski
,”
Biochem. J.
0264-6021,
85
, pp.
440
447
.
13.
Edwards
,
V. H.
, 1970, “
Influence of High Substrate Concentrations on Microbial Kinetics
,”
Biotechnol. Bioeng.
0006-3592,
12
, pp.
679
712
.
14.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
, 2003, “
MATCONT: A Matlab Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Softw.
0098-3500,
29
, pp.
141
164
.
15.
Riet
,
A.
, 2000, “
A Continuation Toolbox in MATLAB
,” Master thesis, Mathematical Institute, Utrecht University, The Netherlands.
16.
Govaerts
,
W.
,
Kuznetsov
,
Yu. A.
, and
Dhooge
,
A.
, 2005, “
Numerical Continuation of Bifurcations of Limit Cycles in MATLAB
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
27
, pp.
231
252
.
17.
Kuznetsov
,
Yu. A.
, 2005, “
Practical Computation of Normal Forms on Center Manifolds at Degenerate Bogdanov-Takens Bifurcations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
11
), pp.
3535
3546
.
18.
Dumortier
,
F.
,
Roussarie
,
R.
,
Sotomayor
,
J.
, and
Zoladek
,
H.
, 1991,
Bifurcations of Planar Vector Fields, Lect. Notes in Math
, V.
1
1480
Springer
,
New York
.
19.
Seydel
,
R.
, 1994,
Practical Bifurcation and Stability Analysis—From Equilibrium to Chaos
,
Springer
,
New York
.
20.
Kuznetsov
,
Yu. A.
, 1995,
Elements of Applied Bifurcations Theory
,
Springer
,
New York
, Chap. 8.
21.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
, 2003, “
Matcont: A Matlab Package for Dynamical Systems with Applications to Neural Activity
,” http://www.matcont.ugent.be/Tutorial1.pdfhttp://www.matcont.ugent.be/Tutorial1.pdf.
22.
Broer
,
H. W.
, 1993,
Notes on Perturbation Theory 1991, Erasmus ICP Mathematics and Fundamental Applications
,
Aristotle University Press
,
Thessaloniki, Greece
, pp.
44
.
You do not currently have access to this content.