We present a new method for simulating squeeze-film damping of microplates actuated by large electrostatic loads. The method enables the prediction of the quality factors of microplates under a limited range of gas pressures and applied electrostatic loads up to the pull-in instability. The method utilizes the nonlinear Euler-Bernoulli beam equation, the von Kármán plate equations, and the compressible Reynolds equation. The static deflection of the microplate is calculated using the beam model. Analytical expressions are derived for the pressure distribution in terms of the plate mode shapes around the deflected position using perturbation techniques. The static deflection and the analytical expressions are substituted into the plate equations, which are solved using a finite-element method. Several results are presented showing the effect of the pressure and the electrostatic force on the structural mode shapes, the pressure distributions, the natural frequencies, and the quality factors.

1.
Li
,
G.
, and
Hughes
,
H.
, 2000, “
Review of Viscous Damping in Micro-Machined Structures
,”
Proc. SPIE
0277-786X,
4176
, pp.
30
46
.
2.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
170
181
.
3.
Yang
,
Y. J.
,
Gretillat
,
M. A.
, and
Senturia
,
S. D.
, 1997, “
Effect of Air Damping on the Dynamics of Nonuniform Deformations of Microstructures
,” in
Int. Conf. on Solid State Sensors and Actuators: TRANSDUCERS ’97
,
Chicago, Vol.
2
, pp.
1093
1096
.
4.
Hung
,
E. S.
, and
Senturia
,
S. D.
, 1999, “
Generating Efficient Dynamical Models for Microelectromechanical Systems from a Few Finite-Element Simulations Runs
,”
J. Microelectromech. Syst.
1057-7157,
8
, pp.
280
289
.
5.
McCarthy
,
B.
,
Adams
,
G.
,
McGruer
,
N.
, and
Potter
,
D.
, 2002, “
A Dynamic Model, Including Contact Bounce, of an Electrostatically Actuated Microswitch
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
276
283
.
6.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-order Model for Electrically Actuated Microbeam-based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
672
680
.
7.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
, 2004,
Linear and Nonlinear Structural Mechanics
,
Wiley
, New York.
8.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2002, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
795
766
.
9.
Veijola
,
T.
,
Kuisma
,
H.
,
Lahdenperä
,
J.
, and
Ryhänen
,
T.
, 1995, “
Equivalent-Circuit Model of the Squeezed Gas Film in a Silicon Accelerometer
,”
Sens. Actuators, A
0924-4247,
48
, pp.
239
248
.
10.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
, New York.
11.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
211
236
.
12.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1991,
The Finite Element Method, Vol. 2: Nonlinear Problems
,
McGraw-Hill
, New York.
13.
Tilmans
,
H. A.
, and
Legtenberg
,
R.
, 1994, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators. Part II. Theory and Performance
,”
Sens. Actuators, A
0924-4247,
45
, pp.
67
84
.
15.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
Modeling and Simulations of Thermoelastic Damping in Microplates
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1711
1717
.
16.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
McGraw-Hill
, New York.
You do not currently have access to this content.