Granular damping, which possesses promising features for vibration suppression in harsh environments such as in turbo-machinery and spacecraft, has been studied using empirical analysis and more recently using the discrete element method (DEM). The mechanism of granular damping is nonlinear and, when numerical analyses are employed, usually a relatively long simulation time of structural vibration is needed to reflect the damping behavior. The present research explores the granular damping analysis by means of the direct simulation Monte Carlo (DSMC) approach. Unlike the DEM that tracks the motion of granules based upon the direct numerical integration of Newton’s equations, the DSMC is a statistical method derived from the Boltzmann equation to describe the velocity evolution of the granular system. Since the exact time and locations of contacts among granules are not calculated in the DSMC, a significant reduction in computational time/cost can be achieved. While the DSMC has been exercised in a variety of gas/granular systems, its implementation to granular damping analysis poses unique challenges. In this research, we develop a new method that enables the coupled analysis of the stochastic granular motion and the structural vibration. The complicated energy transfer and dissipation due to the collisions between the granules and the host structure and among the granules is directly analyzed, which is essential to damping evaluation. Also, the effects of granular packing ratio and the excluded volume of granules, which may not be considered in the conventional DSMC approach, are explicitly incorporated in the analysis. A series of numerical studies are performed to highlight the accuracy and efficiency of the new approach.

1.
Friend
,
R. D.
, and
Kinra
,
V. K.
, 2000, “
Particle Impact Damping
,”
J. Sound Vib.
0022-460X,
233
(
1
), pp.
93
118
.
2.
Saeki
,
M.
, 2002, “
Impact Damping With Granular Materials in a Horizontally Vibrating System
,”
J. Sound Vib.
0022-460X,
251
(
1
), pp.
153
161
.
3.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
DEM Simulation of Particle Damping
,”
Powder Technol.
0032-5910,
142
, pp.
154
165
.
4.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
Simulation and Characterization of Particle Damping in Transient Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
202
211
.
5.
Flint
,
E. M.
, 1999, “
Experimental Measurements of the Particle Damping Effectiveness Under Centrifugal Loads
,”
Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference
, Monterey, CA, February 9–11.
6.
Xu
,
Z. W.
,
Chan
,
K. W.
, and
Liao
,
W. H.
, 2004, “
An Empirical Method for Particle Damping Design
,”
Shock Vib.
1070-9622,
11
, pp.
647
664
.
7.
Wu
,
C. J.
,
Liao
,
W. H.
, and
Wang
,
M. Y.
, 2004, “
Modeling of Granular Particle Damping Using Multiphase Flow Theory of Gas-Particle
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
196
201
.
8.
Fang
,
X.
, and
Tang
,
J.
, 2006, “
Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
489
500
.
9.
Cundall
,
P.
, and
Strack
,
O.
, 1979, “
A Distinct Element Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
65
.
10.
Tijskens
,
E.
,
Ramon
,
H.
, and
Baerdemaeker
,
J. D.
, 2003, “
Discrete Element Modeling for Process Simulation in Agriculture
,”
J. Sound Vib.
0022-460X,
266
, pp.
493
514
.
11.
Grest
,
G. S.
,
Dunweg
,
B.
, and
Kremer
,
K.
, 1989, “
Vectorized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles
,”
Comput. Phys. Commun.
0010-4655,
55
, pp.
269
285
.
12.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford Science Publications
, Oxford, UK.
13.
Alexander
,
F. J.
,
Garcia
,
A. L.
, and
Alder
,
B. J.
, 1995, “
A Consistent Boltzmann Algorithm
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
5212
5215
.
14.
Nanbu
,
K.
, 1980, “
Direct Simulation Scheme Derived From the Boltzmann Equation. I. Monocomponent Gases
,”
J. Phys. Soc. Jpn.
0031-9015,
49
, pp.
2042
2049
.
15.
Tanaka
,
T.
,
Yonemura
,
S.
,
Kiribayashi
,
K.
, and
Tsuji
,
Y.
, 1996, “
Cluster Formation and Particle-Induced Instability in Gas-Solid Flows Predicted by the DSMC Method
,”
JSME Int. J., Ser. B
1340-8054,
39
, pp.
239
245
.
16.
Herrmann
,
H. J.
, and
Luding
,
S.
, 1998, “
Modeling Granular Media on the Computer
,”
Continuum Mech. Thermodyn.
0935-1175,
10
, pp.
189
231
.
17.
Muller
,
M.
, 2001, “
Fast Algorithms for the Simulation of Granular Particles
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
18.
Hopkins
,
M. A.
, and
Shen
,
H. H.
, 1992, “
A Monte Carlo Solution for Rapidly Shearing Granular Flows Based on the Kinetic Theory of Dense Gases
,”
J. Fluid Mech.
0022-1120,
244
, pp.
477
491
.
19.
Fayed
,
M. E.
, and
Otten
,
L.
, eds., 1997,
Handbook of Powder Science and Technology
,
2nd ed.
,
Chapman & Hall
, New York.
20.
Luding
,
S.
,
Muller
,
M.
, and
McNamara
,
S.
, 1998, “
The Validity of ‘Molecular Chaos’ in Granular Flows
,”
Proceedings World Congress on Particle Technology
, Brighton, UK, July 7–9, CD: ISBN 0-85295-401-9.
21.
Herrmann
,
H. J.
, and
Muller
,
M.
, 2000, “
Simulations of Granular Materials on Different Scales
,”
Comput. Phys. Commun.
0010-4655,
127
, pp.
120
125
.
22.
Poschel
,
T.
,
Brilliantov
,
N.
, and
Schwager
,
T.
, 2002, “
Violation of Molecular Chaos in Dissipative Gases
,”
Int. J. Mod. Phys. C
0129-1831,
13
, pp.
1263
1272
.
23.
Fang
,
X.
, and
Tang
,
J.
, 2006, “
A Highly Efficient Discrete Element Approach for Granular Damping Analysis
,”
Proc. SPIE
0277-786X,
V6169
, pp.
205
214
.
You do not currently have access to this content.