The paper presents theoretical and implementation aspects related to a numerical integrator used for the simulation of large mechanical systems with flexible bodies and contact/impact. The proposed algorithm is based on the Hilber-Hughes-Taylor (HHT) implicit method and is tailored to answer the challenges posed by the numerical solution of index 3 differential-algebraic equations that govern the time evolution of a multibody system. One of the salient attributes of the algorithm is the good conditioning of the Jacobian matrix associated with the implicit integrator. Error estimation, integration step-size control, and nonlinear system stopping criteria are discussed in detail. Simulations using the proposed algorithm of an engine model, a model with contacts, and a model with flexible bodies indicate a 2 to 3 speedup factor when compared against benchmark MSC.ADAMS runs. The proposed HHT-based algorithm has been released in the 2005 version of the MSC.ADAMS/Solver.

1.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
2.
Newmark
,
N. M.
, 1959, “
A method of computation for structural dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
85
, pp.
67
94
.
3.
Ascher
,
U. M.
, and
Petzold
,
L. R.
, 1998,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
,
Philadelphia, PA
.
4.
Hughes
,
T. J. R.
, 1987,
Finite Element Method—Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Cardona
,
A.
, and
Geradin
,
M.
, 1994, “
Numerical Integration of Second Order Differential-Algebraic Systems in Flexible Mechanics Dynamics
,” in
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
,
M. F. O. S.
Pereira
and
J. A. C.
Ambrosio
, eds.,
Kluwer Academic
,
Dordrecht
.
6.
Shabana
,
A. A.
, 1994,
Computational Dynamics
,
Wiley
,
New York
.
7.
Pars
,
L. A.
, 1965,
A Treatise on Analytical Dynamics
,
Wiley
,
New York
.
8.
Haug
,
E. J.
1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
, 1989,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
10.
Le Vey
,
G.
, 1994, “
Differential Algebraic Equations—A New Look at the Index
,” Technical report, Institut de Recherche en Informatique et Systemes Aleatoires.
11.
Kunkel
,
P.
, and
Mehrmann
,
V.
, 2006,
Differential Algebraic Equations. Analysis and Numerical Solution
,
European Math. Soc. Textbooks in Mathematics
,
Zurich
.
12.
Petzold
,
L. R.
, 1982, “
Differential-Algebraic Equations are not ODE’s
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
3
(
3
), pp.
367
384
.
13.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2003, “
Robust Integration Schemes for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
395
420
.
14.
Eich-Sollner
,
E.
, and
Fuhrer
,
C.
, 1998,
Numerical Methods in Multibody Dynamics
,
Teubner-Verlag
,
Stuttgart
.
15.
Anderson
,
K. S.
, and
Oghbaei
,
M.
, 2005, “
A Dynamics Simulation of Multibody Systems Using a New State-Time Methodology
,”
Multibody Syst. Dyn.
1384-5640,
14
(
1
), pp.
61
80
.
16.
Hairer
,
E.
, and
Wanner
,
G.
, 1991,
Solving Ordinary Differential Equations
, Vol.
II
of Computational Mathematics,
Springer-Verlag
,
New York
.
17.
Lubich
,
C.
,
Nowak
,
U.
,
Pohle
,
U.
, and
Engstler
,
C.
, 1995, “
MEXX—Numerical Software for the Integration of Constrained Mechanical Multibody Systems
,”
Mech. Struct. Mach.
0890-5452,
23
, pp.
473
495
.
18.
Potra
,
F. A.
, 1993, “
Implementation of Linear Multistep Methods for Solving Constrained Equations of Motion
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
30
(
3
), pp.
774
789
.
19.
Yen
,
J.
,
Petzold
,
L.
, and
Raha
,
S.
, 1996, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,” Technical report TR96-024, Dept. of Comp. Sci., University of Minnesota.
20.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer-Verlag
,
Berlin
.
21.
Cuadrado
,
J.
,
Dopico
,
D.
,
Naya
,
M. N.
, and
Gonzalez
,
M.
, 2004, “
Penalty, Semi-recursive and Hybrid Methods for MBS Real-Time Dynamics in the Context of Structural Integrators
,”
Multibody Syst. Dyn.
1384-5640,
12
, pp.
117
132
.
22.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
23.
Owren
,
B.
, and
Simonsen
,
H.
, 1995, “
Alternative Integration Methods for Problems in Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
122
, pp.
1
10
.
24.
Jay
,
L. O.
, 1998, “
Structure Preservation for Constrained Dynamics With Super Partitioned Additive Runge-Kutta Methods
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
, pp.
416
446
.
25.
Schaub
,
M.
, and
Simeon
,
B.
, 2002, “
Automatic h-Scaling for the Efficient Time Integration of Stiff Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
329
345
.
26.
Cardona
,
A.
, and
Geradin
,
M.
, 1989, “
Time Integration of the Equation of Motion in Mechanical Analysis
,”
Comput. Struct.
0045-7949,
33
, pp.
881
820
.
27.
Lötstedt
,
C.
, and
Petzold
,
L.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
,”
Math. Comput.
0025-5718,
174
, pp.
491
516
.
28.
Brenan
,
K.
, and
Engquist
,
B. E.
, 1988, “
Backward Differentiation Approximations of Nonlinear Differential/Algebraic Systems
,”
Math. Comput.
0025-5718,
51
(
184
), pp.
659
676
.
29.
Jay
,
L. O.
, and
Negrut
,
D.
, “On an Extension of the HHT Method for Index 3 Differential Algebraic Equations,” Electron. Trans. Numer. Anal. 1097-4067, submitted.
30.
Dennis
,
J.
, and
Schnabel
,
R.
, 1983,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
MSCsoftware, 2005, ADAMS User Manual. Also available online at http://www.mscsoftware.comhttp://www.mscsoftware.com
32.
Gear
,
C. W.
, 1971,
Numerical Initial Value Problems of Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Gavrea
,
B.
,
Negrut
,
D.
, and
Potra
,
F.
, 2005, “
The Newmark Integration Method for Simulation of Multibody Systems: Analytical Considerations (IMECE 2005-81770)
,” in
Proceedings of the International Mechanical Engineering Congress and Exposition
,
Orlando
, FL, ASME, New York.
34.
Zienkiewicz
,
O. C.
, and
Xie
,
Y. M.
, 1991, “
A Simple Error Estimator and Adaptive Time-Stepping Procedure for Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
20
, pp.
871
887
.
35.
Bruls
,
O.
,
Duysinx
,
P.
, and
Golinval
,
J.
, 2005, “
A Unified Finite Element Framework for the Dynamic Analysis of Controlled Flexible Mechanisms
,” in
Proceeding of Multibody Dynamics ECCOMAS Thematic Conference
, June 21-24, Madrid, Spain.
36.
Atkinson
,
K. E.
, 1989,
An Introduction to Numerical Analysis
,
2nd ed.
,
Wiley
,
New York
.
37.
Gear
,
C. W.
,
Gupta
,
G.
, and
Leimkuhler
,
B.
, 1985, “
Automatic Integration of the Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12
, pp.
77
90
.
38.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
, 1968, “
Coupling of Substructures for Dynamics Analyses
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1313
1319
.
39.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
(
2
), pp.
371
375
.
This content is only available via PDF.
You do not currently have access to this content.