Abstract

The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analyzed for consistency, stability, and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.

References

1.
Gajic
,
Z.
, and
Lim
,
M.
,
2001
,
Optimal Control of Singularly Perturbed Linear Systems and Applications
,
Marcel-Dekker
,
New York
.
2.
Naidu
,
D.
, and
Rao
,
A.
,
1985
,
Singular Perturbation Analysis of Discrete Control Systems
,
Springer-Verlag
,
Berlin, Germany
.
3.
Miller
,
J.
,
1997
,
Singular Perturbation Problems in Chemical Physics
,
Wiley
,
New York
.
4.
Rattan
,
M.
,
Kaushik
,
A.
,
Chamoli
,
N.
, and
Bose
,
T.
,
2016
, “
Steady State Creep Behavior of Thermally Graded Isotropic Rotating Disc of Composite Taking Into Account the Thermal Residual Stress
,”
Eur. J. Mech. - A/Solids
,
60
, pp.
315
326
.10.1016/j.euromechsol.2016.08.007
5.
Lu
,
P.
,
1973
,
Introduction to the Mechanics of Viscous Fluids
,
Holt-Rinehart & Winston
,
New York
.
6.
Nave
,
O.
, and
Sharma
,
M.
,
2020
, “
Singular Perturbed Vector Field (SPVF) Applied to Complex ODE System With Hidden Hierarchy Application to Turbocharger Engine Model
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
21
(
1
), pp.
99
113
.10.1515/ijnsns-2019-0024
7.
Kaushik
,
A.
, and
Sharma
,
M.
,
2012
, “
A Robust Numerical Approach for Singularly Perturbed Time Delayed Parabolic Partial Differential Equations
,”
Comput. Math. Model.
,
23
(
1
), pp.
96
106
.10.1007/s10598-012-9122-5
8.
Murray
,
J. D.
,
2002
,
Mathematical Biology: An Introduction
,
Springer
,
New York
.
9.
Barbu
,
L.
, and
Moroşanu
,
G.
,
2007
,
Singularly Perturbed Boundary Value Problems
,
Birkhäusar
,
Basel, Switzerland
.
10.
Linß
,
T.
,
2010
,
Layer Adapted Meshes for Reaction Convection Diffusion Problems
,
Springer
,
Berlin, Germany
.
11.
Kaushik
,
A.
,
Vashishth
,
A. K.
,
Kumar
,
V.
, and
Sharma
,
M.
,
2019
, “
A Modified Graded Mesh and Higher Order Finite Element Approximation for Singular Perturbation Problems
,”
J. Comput. Phys.
,
395
, pp.
275
285
.10.1016/j.jcp.2019.04.073
12.
Sharma
,
K.
, and
Kaushik
,
A.
,
2006
, “
A Solution of the Discrepancy Occurs Due to Using the Fitted Mesh Approach Rather Than to the Fitted Operator for Solving Singularly Perturbed Differential Equations
,”
Appl. Math. Comput.
,
181
(
1
), pp.
756
766
.10.1016/j.amc.2006.02.009
13.
Sharma
,
N.
, and
Kaushik
,
A.
,
2023
, “
A Uniformly Convergent Difference Method for Singularly Perturbed Parabolic Partial Differential Equations With Large Delay and Integral Boundary Condition
,”
J. Appl. Math. Comput.
,
69
(
1
), pp.
1071
1093
.10.1007/s12190-022-01783-2
14.
Toprakseven
,
Ş.
,
2021
, “
Superconvergence of a Modified Weak Galerkin Method for Singularly Perturbed Two-Point Elliptic Boundary-Value Problems
,”
Calcolo
,
59
(
1
), p.
1
.10.1007/s10092-021-00449-y
15.
Nave
,
O.
,
Gol'dshtein
,
V.
, and
Ajadi
,
S.
,
2015
, “
Singularly Perturbed Homotopy Analysis Method Applied to the Pressure Driven Flame in Porous Media
,”
Combust. Flame
,
162
(
3
), pp.
864
873
.10.1016/j.combustflame.2014.03.018
16.
Toprakseven
,
Ş.
, and
Zhu
,
P.
,
2023
, “
Error Analysis of a Weak Galerkin Finite Element Method for Two-Parameter Singularly Perturbed Differential Equations in the Energy and Balanced Norms
,”
Appl. Math. Comput.
,
441
, p.
127683
.10.1016/j.amc.2022.127683
17.
Singh
,
S.
,
Kumar
,
D.
, and
Shanthi
,
V.
,
2023
, “
Uniformly Convergent Scheme for Fourth-Order Singularly Perturbed Convection-Diffusion ODE
,”
Appl. Numer. Math.
,
186
, pp.
334
357
.10.1016/j.apnum.2023.01.020
18.
Kaushik
,
A.
, and
Sharma
,
N.
,
2020
, “
An Adaptive Difference Scheme for Parabolic Delay Differential Equation With Discontinuous Coefficients and Interior Layers
,”
J. Differ. Equations
,
26
(
11–12
), pp.
1450
1470
.10.1080/10236198.2020.1843645
19.
Du
,
S.
,
Lin
,
R.
, and
Zhang
,
Z.
,
2021
, “
Robust Recovery-Type a Posteriori Error Estimators for Streamline Upwind/Petrov Galerkin Discretizations for Singularly Perturbed Problems
,”
Appl. Numer. Math.
,
168
, pp.
23
40
.10.1016/j.apnum.2021.05.020
20.
Zhang
,
J.
, and
Chen
,
H.
,
2019
, “
Lower Bounds of Error Estimates for Singular Perturbation Problems With Jacobi-Spectral Approximations
,”
Appl. Math. Lett.
,
87
, pp.
108
114
.10.1016/j.aml.2018.07.019
21.
Kaushik
,
A.
,
2007
, “
Pointwise Uniformly Convergent Numerical Treatment for the Non-Stationary Burger–Huxley Equation Using Grid Equidistribution
,”
Int. J. Comput. Math.
,
84
(
10
), pp.
1527
1546
.10.1080/00207160701314505
22.
Huang
,
J.
,
Cen
,
Z.
, and
Xu
,
A.
,
2021
, “
An Improved a Posteriori Error Estimation for a Parameterized Singular Perturbation Problem
,”
Appl. Math. Lett.
,
114
, p.
106912
.10.1016/j.aml.2020.106912
23.
Juntunen
,
M.
, and
Stenberg
,
R.
,
2009
, “
A Residual Based a Posteriori Estimator for the Reaction Diffusion Problem
,”
C. R. Math.
,
347
(
9–10
), pp.
555
558
.10.1016/j.crma.2009.03.010
24.
Ainsworth
,
M.
, and
Vejchodský
,
T.
,
2011
, “
Fully Computable Robust a Posteriori Error Bounds for Singularly Perturbed Reaction Diffusion Problems
,”
Numer. Math.
,
119
(
2
), pp.
219
243
.10.1007/s00211-011-0384-1
25.
Zhang
,
J.
, and
Liu
,
X.
,
2016
, “
Analysis of SDFEM on Shishkin Triangular Meshes and Hybrid Meshes for Problems With Characteristic Layers
,”
J. Sci. Comput.
,
68
(
3
), pp.
1299
1316
.10.1007/s10915-016-0180-2
26.
Linß
,
T.
, and
Kopteva
,
N.
,
2010
, “
A Posteriori Error Estimation for a Defect-Correction Method Applied to Convection-Diffusion Problems
,”
Int. J. Numer. Anal. Model.
,
7
(
4
), pp. 718–733.https://www.researchgate.net/publication/265640224_A_posteriori_error_estimation_for_a_defect-correction_method_applied_to_convection-diffusion_problems
27.
Linß
,
T.
,
2010
, “
A Posteriori Error Estimation for a Singularly Perturbed Problem With Two Small Parameters
,”
Int. J. Numer. Anal. Model.
,
7
(
3
), pp.
491
506
.https://www.researchgate.net/publication/267083558_A_posteriori_error_estimation_for_a_singularly_perturbed_problem_with_two_small_parameters
28.
Kadalbajoo
,
M.
, and
Jha
,
A.
,
2013
, “
A Posteriori Error Analysis for Defect Correction Method for Two Parameter Singular Perturbation Problems
,”
J. Appl. Math. Comput.
,
42
(
1–2
), pp.
421
440
.10.1007/s12190-012-0628-y
29.
Kopteva
,
N.
,
2001
, “
Maximum Norm a Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem
,”
SIAM J. Numer. Anal.
,
39
(
2
), pp.
423
441
.10.1137/S0036142900368642
30.
Vulanović
,
R.
, and
Hovhannisyan
,
G.
,
2006
, “
A Posteriori Error Estimates for One-Dimensional Convection-Diffusion Problems
,”
Comput. Math. Appl.
,
51
(
6–7
), pp.
915
926
.10.1016/j.camwa.2005.11.027
31.
Reinhardt
,
H.-J.
,
1985
, “
A-Posteriori Error Estimation for Finite Element Modifications of Line Methods Applied to Singularly Perturbed Partial Differential Equations
,”
Appl. Numer. Math.
,
1
(
2
), pp.
145
176
.10.1016/0168-9274(85)90022-4
32.
Reinhardt
,
H.-J.
,
1981
, “
A-Posteriori Error Estimates and Adaptive Finite Element Computations for Singularly Perturbed One Space Dimensional Parabolic Equations
,”
North-Holland Math. Stud.
,
47
, pp.
213
233
.10.1016/S0304-0208(08)71111-3
33.
Wang
,
S.
,
1997
, “
An a Posteriori Error Estimate for Finite Element Approximations of a Singularly Perturbed Advection-Diffusion Problem
,”
J. Comput. Appl. Math.
,
87
(
2
), pp.
227
242
.10.1016/S0377-0427(97)00191-X
34.
Zhang
,
B.
,
Chen
,
S.
, and
Zhao
,
J.
,
2014
, “
A Posteriori Error Estimation Based on Conservative Flux Reconstruction for Nonconforming Finite Element Approximations to a Singularly Perturbed Reaction–Diffusion Problem on Anisotropic Meshes
,”
Appl. Math. Comput.
,
232
, pp.
1062
1075
.10.1016/j.amc.2014.01.145
35.
Zhang
,
B.
,
Chen
,
S.
, and
Zhao
,
J.
,
2015
, “
Guaranteed a Posteriori Error Estimates for Nonconforming Finite Element Approximations to a Singularly Perturbed Reaction Diffusion Problem
,”
Appl. Numer. Math.
,
94
, pp.
1
15
.10.1016/j.apnum.2015.02.002
36.
Verfürth
,
R.
,
1998
, “
Robust a Posteriori Error Estimators for Singularly Perturbed Reaction Diffusion Equations
,”
Numer. Math.
,
78
, pp.
479
493
.10.1007/s002110050322
37.
Toprakseven
,
Ş.
,
2022
, “
Optimal Order Uniform Convergence in Energy and Balanced Norms of Weak Galerkin Finite Element Method on Bakhvalov-Type Meshes for Nonlinear Singularly Perturbed Problems
,”
Comput. Appl. Math.
,
41
(
8
), p.
377
.10.1007/s40314-022-02090-z
38.
Linß
,
T.
,
2001
, “
Finite Difference Schemes for Convection-Diffusion Problems With a Concentrated Source and a Discontinuous Convection Field
,”
Comput. Methods Appl. Math.
,
2
(
1
), pp.
41
49
.10.2478/cmam-2002-0003
39.
Protter
,
M.
, and
Weinberger
,
H.
,
1984
,
Maximum Principles in Differential Equations
,
Springer-Verlag
,
New York
.
40.
Kellogg
,
R. B.
, and
Tsan
,
A.
,
1978
, “
Analysis of Some Difference Approximations for a Singular Perturbation Problem Without Turning Points
,”
Math. Comput.
,
32
(
144
), pp.
1025
1039
.10.1090/S0025-5718-1978-0483484-9
41.
Roos
,
H.-G.
,
Stynes
,
M.
, and
Tobiska
,
L.
,
2008
,
Robust Numerical Methods for Singularly Perturbed Differential Equations
,
Springer
,
Berlin, Germany
.
42.
Herceg
,
D.
,
1989
, “
Uniform Fourth Order Difference Scheme for a Singular Perturbation Problem
,”
Numer. Math.
,
56
(
7
), pp.
675
693
.10.1007/BF01405196
43.
Roos
,
H.-G.
,
2006
, “
Error Estimates for Linear Finite Elements on Bakhvalov Type Meshes
,”
Appl. Math.
,
51
(
1
), pp.
63
72
.10.1007/s10492-006-0005-y
44.
Brdar
,
M.
, and
Zarin
,
H.
,
2016
, “
A Singularly Perturbed Problem With Two Parameters on a Bakhvalov Type Mesh
,”
J. Comput. Appl. Math.
,
292
, pp.
307
319
.10.1016/j.cam.2015.07.011
45.
Kopteva
,
N.
, and
O'Riordan
,
E.
,
2010
, “
Shishkin Meshes in the Numerical Solution of Singularly Perturbed Differential Equations
,”
Int. J. Numer. Anal. Model.
,
7
(
3
), pp.
393
415
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1367d84dd6ebb9f1ca2726921a93f1dd40b2447b
46.
Kopteva
,
N.
,
Madden
,
N.
, and
Stynes
,
M.
,
2005
, “
Grid Equidistribution for Reaction Diffusion Problems in One Dimension
,”
Numer. Algorithms
,
40
(
3
), pp.
305
322
.10.1007/s11075-005-7079-6
47.
Gupta
,
A.
, and
Kaushik
,
A.
,
2021
, “
A Higher-Order Accurate Difference Approximation of Singularly Perturbed Reaction-Diffusion Problem Using Grid Equidistribution
,”
Ain Shams Eng. J.
,
12
(
4
), pp.
4211
4221
.10.1016/j.asej.2021.04.024
48.
Gupta
,
A.
, and
Kaushik
,
A.
,
2021
, “
A Robust Spline Difference Method for Robin-Type Reaction-Diffusion Problem Using Grid Equidistribution
,”
Appl. Math. Comput.
,
390
, p.
125597
.10.1016/j.amc.2020.125597
49.
Gupta
,
A.
, and
Kaushik
,
A.
,
2022
, “
A Higher-Order Hybrid Finite Difference Method Based on Grid Equidistribution for Fourth-Order Singularly Perturbed Differential Equations
,”
J. Appl. Math. Comput.
,
68
(
2
), pp.
1163
1191
.10.1007/s12190-021-01560-7
50.
Gupta
,
A.
,
Kaushik
,
A.
, and
Sharma
,
M.
,
2023
, “
A Higher-Order Hybrid Spline Difference Method on Adaptive Mesh for Solving Singularly Perturbed Parabolic Reaction–Diffusion Problems With Robin-Boundary Conditions
,”
Numer. Methods Partial Differ. Equations
,
39
(
2
), pp.
1220
1250
.10.1002/num.22931
51.
Gartland
,
E.
,
1988
, “
Graded Mesh Difference Schemes for Singularly Perturbed Two Point Boundary Value Problems
,”
Math. Comput.
,
51
(
184
), pp.
631
657
.10.1090/S0025-5718-1988-0935072-1
52.
Vulanović
,
R.
,
2001
, “
A Priori Meshes for Singularly Perturbed Quasilinear Two Point Boundary Value Problems
,”
IMA J. Numer. Anal.
,
21
, pp.
349
366
.10.1093/imanum/21.1.349
53.
Vulanović
,
R.
, and
Teofanov
,
L.
,
2013
, “
A Modification of the Shishkin Discretization Mesh for One Dimensional Reaction Diffusion Problems
,”
Appl. Math. Comput.
,
220
, pp.
104
116
.10.1016/j.amc.2013.05.055
54.
Kaushik
,
A.
, and
Choudhary
,
M.
,
2022
, “
A Higher-Order Uniformly Convergent Defect Correction Method for Singularly Perturbed Convection-Diffusion Problems on a Polynomial-Shishkin Mesh
,”
Alexandria Eng. J.
,
61
(
12
), pp.
9911
9920
.10.1016/j.aej.2022.03.005
55.
Samarskii
,
A. A.
,
2001
,
The Theory of Difference Schemes
,
CRC Press
,
Boca Raton, FL
.
56.
Andreev
,
V. B.
,
2002
, “
A Priori Solution Estimates of Singularly Perturbed Two-Point Boundary Problems
,”
Matem. Mod.
,
14
(
5
), pp.
5
16
.https://www.mathnet.ru/eng/mm590
57.
Linß
,
T.
,
2007
, “
Layer Adapted Meshes and FEM for Time Dependent Singularly Perturbed Reaction Diffusion Problems
,”
Int. J. Comput. Sci. Math.
,
1
, pp.
259
270
.10.1504/IJCSM.2007.016535
58.
Roos
,
H.-G.
,
Teofanov
,
L.
, and
Uzelac
,
Z.
,
2015
, “
Graded Meshes for Higher Order FEM
,”
J. Comput. Math.
,
33
(
1
), pp.
1
16
.10.4208/jcm.1405-m4362
59.
Linß
,
T.
,
2000
, “
Uniform Superconvergence of a Galerkin Finite Element Method on Shishkin-Type Meshes
,”
Numer. Methods Partial Differ. Equations
,
16
, pp.
426
440
.10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R
60.
Linß
,
T.
,
1999
, “
An Upwind Difference Scheme on a Novel Shishkin Type Mesh for a Linear Convection Diffusion Problem
,”
J. Comput. Appl. Math.
,
110
(
1
), pp.
93
104
.10.1016/S0377-0427(99)00198-3
61.
Roos
,
H. G.
, and
Zarin
,
H.
,
2003
, “
The Streamline-Diffusion Method for a Convection–Diffusion Problem With a Point Source
,”
J. Comput. Appl. Math.
,
150
(
1
), pp.
109
128
.10.1016/S0377-0427(02)00568-X
You do not currently have access to this content.