Abstract

A novel nonlinear dynamics model is developed in this paper to describe the static and dynamic nonlinear behaviors of a rod pendulum partially immersed in still water. The pendulum is hinged above the water level (WL) and subject to nonlinear gravity, hydrostatic, and hydrodynamic loads, all of which are incorporated into the system dynamics. The nonlinear static behavior and stability of the pendulum have been characterized by analyzing the fixed points. It is found that Pitchfork bifurcation governs the relationship between the rod density (the control parameter) and the static equilibrium angle. The pendulum's nonlinear response to external harmonic torque is obtained using harmonic balance method (HBM). The influence of system parameters, including hinge height, rod diameter, and rod density, on the nonlinear frequency response is examined. Upon altering the system parameters, particularly the rod density, it is found that the system exhibits either a softening or a hardening effect.

References

1.
Al-Solihat
,
M. K.
, and
Al Janaideh
,
M.
,
2023
, “
Dynamic Modeling and Nonlinear Oscillations of a Rotating Pendulum With a Spinning Tip Mass
,”
J. Sound Vib.
,
548
, p.
117485
.10.1016/j.jsv.2022.117485
2.
Peters
,
R. D.
,
2005
, “
The Pendulum in the 21st Century-Relic or Trendsetter
,”
The Pendulum
,
Springer
,
Dordrecht, The Netherlands
, pp.
19
35
.
3.
Stachowiak
,
T.
, and
Okada
,
T.
,
2006
, “
A Numerical Analysis of Chaos in the Double Pendulum
,”
Chaos, Solitons Fractals
,
29
(
2
), pp.
417
422
.10.1016/j.chaos.2005.08.032
4.
Roy
,
J.
,
Mallik
,
A. K.
, and
Bhattacharjee
,
J. K.
,
2013
, “
Role of Initial Conditions in the Dynamics of a Double Pendulum at Low Energies
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
993
1004
.10.1007/s11071-013-0848-1
5.
Carroll
,
S. P.
,
Owen
,
J. S.
, and
Hussein
,
M. F.
,
2014
, “
Experimental Identification of the Lateral Human–Structure Interaction Mechanism and Assessment of the Inverted-Pendulum Biomechanical Model
,”
J. Sound Vib.
,
333
(
22
), pp.
5865
5884
.10.1016/j.jsv.2014.06.022
6.
De Paula
,
A. S.
,
Savi
,
M. A.
,
Wiercigroch
,
M.
, and
Pavlovskaia
,
E.
,
2012
, “
Bifurcation Control of a Parametric Pendulum
,”
Int. J. Bifurcation Chaos
,
22
(
5
), p.
1250111
.10.1142/S0218127412501118
7.
Horton
,
B.
,
Wiercigroch
,
M.
, and
Xu
,
X.
,
2008
, “
Transient Tumbling Chaos and Damping Identification for Parametric Pendulum
,”
Philos. Trans. R. Soc., A
,
366
(
1866
), pp.
767
784
.10.1098/rsta.2007.2126
8.
Bartuccelli
,
M.
,
Gentile
,
G.
, and
Georgiou
,
K.
,
2001
, “
On the Dynamics of a Vertically Driven Damped Planar Pendulum
,”
Proc. R. Soc. London. Ser. A
,
457
(
2016
), pp.
3007
3022
.10.1098/rspa.2001.0841
9.
Eissa
,
M.
, and
Sayed
,
M.
,
2008
, “
Vibration Reduction of a Three Dof Non-Linear Spring Pendulum
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
2
), pp.
465
488
.10.1016/j.cnsns.2006.04.001
10.
Gitterman
,
M.
,
2010
, “
Spring Pendulum: Parametric Excitation vs an External Force
,”
Phys. A
,
389
(
16
), pp.
3101
3108
.10.1016/j.physa.2010.03.008
11.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
New York
.
12.
Koch
,
B.
, and
Leven
,
R.
,
1985
, “
Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,”
Phys. D
,
16
(
1
), pp.
1
13
.10.1016/0167-2789(85)90082-X
13.
Han
,
N.
, and
Cao
,
Q.
,
2017
, “
A Parametrically Excited Pendulum With Irrational Nonlinearity
,”
Int. J. Non-Linear Mech.
,
88
, pp.
122
134
.10.1016/j.ijnonlinmec.2016.10.018
14.
Xu
,
X.
, and
Wiercigroch
,
M.
,
2007
, “
Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
311
320
.10.1007/s11071-006-9074-4
15.
Szemplińska-Stupnicka
,
W.
,
Tyrkiel
,
E.
, and
Zubrzycki
,
A.
,
2000
, “
The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,”
Int. J. Bifurcation Chaos
,
10
(
9
), pp.
2161
2175
.10.1142/S0218127400001365
16.
Szemplińska-Stupnicka
,
W.
, and
Tyrkiel
,
E.
,
2002
, “
The Oscillation–Rotation Attractors in the Forced Pendulum and Their Peculiar Properties
,”
Int. J. Bifurcation Chaos
,
12
(
1
), pp.
159
168
.10.1142/S0218127402004231
17.
Han
,
N.
, and
Lu
,
P.-P.
,
2020
, “
Nonlinear Dynamics of a Classical Rotating Pendulum System With Multiple Excitations
,”
Chin. Phys. B
,
29
(
11
), pp.
110502
110515
.10.1088/1674-1056/ab9df2
18.
Han
,
N.
, and
Cao
,
Q.
,
2017
, “
Rotating Pendulum With Smooth and Discontinuous Dynamics
,”
Int. J. Mech. Sci.
,
127
, pp.
91
102
.10.1016/j.ijmecsci.2016.09.024
19.
Han
,
N.
, and
Cao
,
Q.
,
2016
, “
Global Bifurcations of a Rotating Pendulum With Irrational Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
36
, pp.
431
445
.10.1016/j.cnsns.2015.12.009
20.
Dabbs
,
M.
, and
Smith
,
P.
,
1996
, “
Critical Forcing for Homoclinic and Heteroclinic Orbits of a Rotating Pendulum
,”
J. Sound Vib.
,
189
(
2
), pp.
231
248
.10.1006/jsvi.1996.0017
21.
Lee
,
W. K.
, and
Park
,
H. D.
,
1997
, “
Chaotic Dynamics of a Harmonically Excited Spring-Pendulum System With Internal Resonance
,”
Nonlinear Dyn.
,
14
(
3
), pp.
211
229
.10.1023/A:1008256920441
22.
Lee
,
W. K.
, and
Park
,
H. D.
,
1999
, “
Second-Order Approximation for Chaotic Responses of a Harmonically Excited Spring–Pendulum System
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
749
757
.10.1016/S0020-7462(98)00055-9
23.
Kapitaniak
,
M.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2013
, “
Synchronous Motion of Two Vertically Excited Planar Elastic Pendula
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
8
), pp.
2088
2096
.10.1016/j.cnsns.2012.12.030
24.
Alasty
,
A.
, and
Shabani
,
R.
,
2006
, “
Chaotic Motions and Fractal Basin Boundaries in Spring-Pendulum System
,”
Nonlinear Anal.: Real World Appl.
,
7
(
1
), pp.
81
95
.10.1016/j.nonrwa.2005.01.003
25.
Amer
,
T.
,
Bek
,
M.
, and
Abohamer
,
M.
,
2019
, “
On the Motion of a Harmonically Excited Damped Spring Pendulum in an Elliptic Path
,”
Mech. Res. Commun.
,
95
, pp.
23
34
.10.1016/j.mechrescom.2018.11.005
26.
Viet
,
L.
, and
Nghi
,
N.
,
2014
, “
On a Nonlinear Single-Mass Two-Frequency Pendulum Tuned Mass Damper to Reduce Horizontal Vibration
,”
Eng. Struct.
,
81
, pp.
175
180
.10.1016/j.engstruct.2014.09.038
27.
Al-Solihat
,
M.
, and
Nahon
,
M.
,
2015
, “
Nonlinear Hydrostatic Restoring of Floating Platforms
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p.
041005
.10.1115/1.4027718
28.
Mathai
,
V.
,
Loeffen
,
L. A.
,
Chan
,
T. T.
, and
Wildeman
,
S.
,
2019
, “
Dynamics of Heavy and Buoyant Underwater Pendulums
,”
J. Fluid Mech.
,
862
, pp.
348
363
.10.1017/jfm.2018.867
29.
Worf
,
D.
,
Khosronejad
,
A.
,
Gold
,
T.
,
Reiterer
,
K.
,
Habersack
,
H.
, and
Sindelar
,
C.
,
2022
, “
Fluid Structure Interaction of a Subaqueous Pendulum: Analyzing the Effect of Wake Correction Via Large Eddy Simulations
,”
Phys. Fluids
,
34
(
5
), p.
055104
.10.1063/5.0086557
30.
Lenci
,
S.
,
Brocchini
,
M.
, and
Lorenzoni
,
C.
,
2012
, “
Experimental Rotations of a Pendulum on Water Waves
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011007
.10.1115/1.4004547
31.
Bos
,
R.
, and
Wellens
,
P.
,
2021
, “
Fluid–Structure Interaction Between a Pendulum and Monochromatic Waves
,”
J. Fluids Struct.
,
100
, p.
103191
.10.1016/j.jfluidstructs.2020.103191
32.
Jiang
,
X.
,
Shi
,
H.
,
Cao
,
F.
,
Zhao
,
Z.
,
Li
,
M.
, and
Chen
,
Z.
,
2023
, “
System Analysis and Experimental Investigation of a Pendulum-Based Wave Energy Converter
,”
Ocean Eng.
,
277
, p.
114300
.10.1016/j.oceaneng.2023.114300
33.
Nicola
,
P.
,
Giovanni
,
B.
,
Biagio
,
P.
,
Antonello
,
S. S.
,
Giacomo
,
V.
,
Giuliana
,
M.
, and
Gianmaria
,
S.
,
2017
, “
Wave Tank Testing of a Pendulum Wave Energy Converter 1: 12 Scale Model
,”
Int. J. Appl. Mech.
,
09
(
2
), p.
1750024
.10.1142/S1758825117500247
34.
Gioia
,
D. G.
,
Pasta
,
E.
,
Brandimarte
,
P.
, and
Mattiazzo
,
G.
,
2022
, “
Data-Driven Control of a Pendulum Wave Energy Converter: A Gaussian Process Regression Approach
,”
Ocean Eng.
,
253
, p.
111191
.10.1016/j.oceaneng.2022.111191
35.
Cai
,
Q.
, and
Zhu
,
S.
,
2021
, “
Applying Double-Mass Pendulum Oscillator With Tunable Ultra-Low Frequency in Wave Energy Converters
,”
Appl. Energy
,
298
, p.
117228
.10.1016/j.apenergy.2021.117228
36.
Ding
,
W.
,
Wang
,
K.
,
Mao
,
Z.
, and
Cao
,
H.
,
2020
, “
Layout Optimization of an Inertial Energy Harvester for Miniature Underwater Mooring Platforms
,”
Mar. Struct.
,
69
, p.
102681
.10.1016/j.marstruc.2019.102681
37.
Li
,
Y.
,
Ma
,
X.
,
Tang
,
T.
,
Zha
,
F.
,
Chen
,
Z.
,
Liu
,
H.
, and
Sun
,
L.
,
2022
, “
High-Efficient Built-in Wave Energy Harvesting Technology: From Laboratory to Open Ocean Test
,”
Appl. Energy
,
322
, p.
119498
.10.1016/j.apenergy.2022.119498
38.
Wu
,
J.
,
Qian
,
C.
,
Zheng
,
S.
,
Chen
,
N.
,
Xia
,
D.
, and
Göteman
,
M.
,
2022
, “
Investigation on the Wave Energy Converter That Reacts Against an Internal Inverted Pendulum
,”
Energy
,
247
, p.
123493
.10.1016/j.energy.2022.123493
39.
Wang
,
H.
,
Wang
,
T.
,
Lv
,
H.
, and
Liu
,
S.
,
2024
, “
An Adjustable Pendulum Mechanism for in-Situ Wave Energy Harvesting in an Unmanned Marine Vehicle
,”
Ocean Eng.
,
297
, p.
117116
.10.1016/j.oceaneng.2024.117116
40.
Yurchenko
,
D.
, and
Alevras
,
P.
,
2018
, “
Parametric Pendulum Based Wave Energy Converter
,”
Mech. Syst. Signal Process.
,
99
, pp.
504
515
.10.1016/j.ymssp.2017.06.026
41.
Whittaker
,
T.
, and
Folley
,
M.
,
2012
, “
Nearshore Oscillating Wave Surge Converters and the Development of Oyster
,”
Philos. Trans. R. Soc. A
,
370
(
1959
), pp.
345
364
.10.1098/rsta.2011.0152
42.
Whittaker
,
T.
,
Collier
,
D.
,
Folley
,
M.
,
Osterried
,
M.
,
Henry
,
A.
, and
Crowley
,
M.
,
2007
, “
The Development of Oyster—A Shallow Water Surging Wave Energy Converter
,”
Proceedings of the 7th European Wave and Tidal Energy Conference
, Porto, Portugal, Sept. 11–13, pp.
11
14
.https://tethysengineering.pnnl.gov/publications/development-oyster-shallow-water-surging-wave-energyconverter-0
43.
DNV-RP-C205
,
2007
,
Environmental Conditions and Environmental Loads
,
Det Norske Veritas
,
Hovik, Norway
.
44.
Journée
,
J. M.
, and
Massie
,
W.
,
2000
,
Offshore Hydromechanics
,
Delft University of Technology
,
Delft, The Netherlands
.
45.
Wilson
,
J. F.
,
2003
,
Dynamics of Offshore Structures
,
Wiley
,
New York
.
46.
Al-Solihat
,
M.
, and
Nahon
,
M.
,
2018
, “
Flexible Multibody Dynamic Modeling of a Floating Wind Turbine
,”
Int. J. Mech. Sci.
,
142–143
, pp.
518
529
.10.1016/j.ijmecsci.2018.05.018
47.
Al-Solihat
,
M. K.
,
Nahon
,
M.
, and
Behdinan
,
K.
,
2019
, “
Dynamic Modeling and Simulation of a Spar Floating Offshore Wind Turbine With Consideration of the Rotor Speed Variations
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081014
.10.1115/1.4043104
48.
Al-Solihat
,
M. K.
,
2024
, “
Nonlinear Static and Dynamic Behaviors of Partially and Fully Submerged Rod Pendulums in Quiescent Water
,”
Nonlinear Dyn.
,
112
(
15
), pp.
12907
12924
.10.1007/s11071-024-09753-y
49.
Biran
,
A.
,
2003
,
Ship Hydrostatics and Stability
,
Butterworth-Heinemann
,
Oxford, UK
.
50.
Thomsen
,
J. J.
,
Vibrations and Stability
, Vol.
2
,
Springer
,
Berlin-Heidelberg
.
51.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
52.
Krauskopf
,
B.
,
Osinga
,
H. M.
, and
Galán-Vioque
,
J.
,
2007
,
Numerical Continuation Methods for Dynamical Systems
, Vol.
2
,
Springer
,
Dordrecht, The Netherlands
.
53.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Siam
,
Philadelphia, PA
.
You do not currently have access to this content.