Abstract

In neural networks, the states of neural networks often exhibit significant spatio-temporal heterogeneity due to the diffusion effect of electrons and differences in the concentration of neurotransmitters. One of the macroscopic reflections of this time-spatial inhomogeneity is Turing pattern. However, most current research in reaction-diffusion neural networks has focused only on one-dimensional location information, and the remaining results considering two-dimensional location information are still limited to the case of two neurons. In this paper, we conduct the dynamic analysis and optimal control of a delayed reaction-diffusion neural network model with bidirectional loop structure. First, several mathematical descriptions are given for the proposed neural network model and the full-dimensional partial differential proportional-derivative (PD) controller is introduced. Second, by analyzing the characteristic equation, the conditions for Hopf bifurcation and Turing instability of the controlled network model are obtained. Furthermore, the amplitude equation of the controlled neural network is obtained based on the multiscale analysis method. Subsequently, we determine the key parameters affecting the formation of Turing pattern depending on the amplitude equation. Finally, multiple sets of computer simulations are carried out to support our theoretical results. It is found that the diffusion coefficients and time delays have significant effects on spatio-temporal dynamics of neural networks. Moreover, after reasonable parameter proportioning, the full-dimensional PD control method can alleviate the spatial heterogeneity caused by diffusion projects and time delays.

References

1.
Wainberg
,
M.
,
Merico
,
D.
,
Delong
,
A.
, and
Brendan
,
J.
,
2018
, “
Deep Learning in Biomedicine
,”
Nat. Biotechnol.
,
36
(
9
), pp.
829
838
.10.1038/nbt.4233
2.
Wang
,
Y.
,
Yu
,
Z.
, and
Zhu
,
L.
,
2023
, “
Intrusion Detection for High-Speed Railways Based on Unsupervised Anomaly Detection Models
,”
Appl. Intell.
,
53
(
7
), pp.
8453
8466
.10.1007/s10489-022-03911-8
3.
Chen
,
Q.
, and
Cao
,
J.
,
2021
, “
Low Tensor-Train Rank With Total Variation for Magnetic Resonance Imaging Reconstruction
,”
Sci. China Tech. Sci.
,
64
(
9
), pp.
1854
1862
.10.1007/s11431-020-1851-5
4.
Chiel
,
H. J.
, and
Thomas
,
P. J.
,
2011
, “
Special Issue on Applied Neurodynamics: From Neural Dynamics to Neural Engineering
,”
J. Neural Eng.
,
8
(
6
), p.
060201
.10.1088/1741-2552/8/6/060201
5.
Xiao
,
M.
,
Zheng
,
W. X.
, and
Cao
,
J.
,
2013
, “
Bifurcation and Control in a Neural Network With Small and Large Delays
,”
Neural Netw.
,
44
, pp.
132
142
.10.1016/j.neunet.2013.03.016
6.
Kwok
,
T.
, and
Smith
,
K. A.
,
2004
, “
A Noisy Self-Organizing Neural Network With Bifurcation Dynamics for Combinatorial Optimization
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
15
(
1
), pp.
84
98
.10.1109/TNN.2002.806621
7.
Ge
,
J.
, and
Xu
,
J.
,
2010
, “
Fold-Hopf Bifurcation in a Simplified Four-Neuron BAM (Bidirectional Associative Memory) Neural Network With Two Delays
,”
Sci. China Tech. Sci.
,
53
(
3
), pp.
633
644
.10.1007/s11431-010-0079-3
8.
Xiao
,
M.
,
Zheng
,
W. X.
,
Jiang
,
G.
, and
Cao
,
J.
,
2015
, “
Undamped Oscillations Generated by Hopf Bifurcations in Fractional-Order Recurrent Neural Networks With Caputo Derivative
,”
IEEE Trans. Neural Netw. Learn. Syst
,
26
(
12
), pp.
3201
3214
.10.1109/TNNLS.2015.2425734
9.
Shi
,
X.
,
Wang
,
Z.
, and
Han
,
L.
,
2017
, “
Finite-Time Stochastic Synchronization of Time-Delay Neural Networks With Noise Disturbance
,”
Nonlinear Dyn
,
88
(
4
), pp.
2747
2755
.10.1007/s11071-017-3408-2
10.
Xu
,
C.
,
Zhang
,
W.
,
Aouiti
,
C.
,
Liu
,
Z.
,
Liao
,
M.
, and
Li
,
P.
,
2023
, “
Further Investigation on Bifurcation and Their Control of Fractional-Order Bidirectional Associative Memory Neural Networks Involving Four Neurons and Multiple Delays
,”
Math. Method Appl. Sci
.,
46
(
3
), pp.
3091
3114
.10.1002/mma.7581
11.
Tabekoueng Njitacke
,
Z.
,
Kengne
,
J.
, and
Fotsin
,
H. B.
,
2020
, “
Coexistence of Multiple Stable States and Bursting Oscillations in a 4D Hopfield Neural Network
,”
Circ. Syst. Signal Pr.
,
39
(
7
), pp.
3424
3444
.10.1007/s00034-019-01324-6
12.
Li
,
Z.
, and
Xia
,
C.
,
2021
, “
Turing Instability and Hopf Bifurcation in Cellular Neural Networks
,”
Int. J. Bifurcat. Chaos
,
31
(
8
), p.
2150143
.10.1142/S0218127421501431
13.
Dupuis
,
J. P.
, and
Groc
,
L.
,
2020
, “
Surface Trafficking of Neurotransmitter Receptors: From Cultured Neurons to Intact Brain Preparations
,”
Neuropharmacology
,
169
, p.
107642
.10.1016/j.neuropharm.2019.05.019
14.
Li
,
R.
,
Cao
,
J.
,
Alsaedi
,
A.
, and
Alsaedi
,
F.
,
2017
, “
Exponential and Fixed-Time Synchronization of Cohen-Grossberg Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms
,”
Appl. Math Comput.
,
313
, pp.
37
51
.10.1016/j.amc.2017.05.073
15.
Stamova
,
I. M.
, and
Simeonov
,
S.
,
2018
, “
Delayed Reaction-Diffusion Cellular Neural Networks of Fractional Order: Mittag-Leffler Stability and Synchronization
,”
ASME J. Comput. Nonlinear Dynam.
,
13
(
1
), p.
011015
.10.1115/1.4038290
16.
Moayeri
,
M. M.
,
Rad
,
J. A.
, and
Parand
,
K.
,
2020
, “
Dynamical Behavior of Reaction-Diffusion Neural Networks and Their Synchronization Arising in Modeling Epileptic Seizure: A Numerical Simulation Study
,”
Comput. Math. Appl.
,
80
(
8
), pp.
1887
1927
.10.1016/j.camwa.2020.08.020
17.
Stamov
,
G.
,
Stamova
,
I.
,
Martynyuk
,
A.
, and
Stamov
,
T.
,
2021
, “
Almost Periodic Dynamics in a New Class of Impulsive Reaction-Diffusion Neural Networks With Fractional-Like Derivatives
,”
Chaos Soliton. Fract.
,
143
, p.
110647
.10.1016/j.chaos.2020.110647
18.
Dong
,
T.
, and
Xia
,
L.
,
2019
, “
Spatial Temporal Dynamic of a Coupled Reaction-Diffusion Neural Network With Time Delay
,”
Cogn. Comput.
,
11
(
2
), pp.
212
226
.10.1007/s12559-018-9618-1
19.
Lin
,
J.
,
Xu
,
R.
, and
Li
,
L.
,
2020
, “
Turing-Hopf Bifurcation of Reaction-Diffusion Neural Networks With Leakage Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
85
, p.
105241
.10.1016/j.cnsns.2020.105241
20.
Zheng
,
Q.
,
Shen
,
J.
, and
Xu
,
Y.
,
2020
, “
Turing Instability in the Reaction-Diffusion Network
,”
Phys. Rev. E
,
102
(
6
), p.
062215
.10.1103/PhysRevE.102.062215
21.
Lin
,
J.
,
Xu
,
R.
, and
Tian
,
X.
,
2019
, “
Pattern Formation in Reaction-Diffusion Neural Networks With Leakage Delay
,”
J. Appl. Anal. Comput.
,
9
(
6
), pp.
2224
2244
.10.11948/20190001
22.
Lin
,
J.
,
Li
,
J.
, and
Xu
,
R.
,
2022
, “
Turing Instability and Pattern Formation of a Fractional Hopfield Reaction-Diffusion Neural Network With Transmission Delay
,”
Nonlinear Anal. Model
,
27
(
5
), pp.
823
840
.10.15388/namc.2022.27.27473
23.
Dijkstra
,
N.
,
Zeidman
,
P.
,
Ondobaka
,
S.
,
Gerven
,
M.
, and
Friston
,
K.
,
2017
, “
Distinct Top-Down and Bottom-Up Brain Connectivity During Visual Perception and Imagery
,”
Sci. Rep.
,
7
(
1
), p.
5677
.10.1038/s41598-017-05888-8
24.
Pando-Naude
,
V.
,
Patyczek
,
A.
,
Bonetti
,
L.
, and
Peter
,
V.
,
2021
, “
An ALE Meta-Analytic Review of Top-Down and Bottom-Up Processing of Music in the Brain
,”
Sci. Rep.
,
11
(
1
), p.
20813
.10.1038/s41598-021-00139-3
25.
Onan
,
A.
,
2022
, “
Bidirectional Convolutional Recurrent Neural Network Architecture With Group-Wise Enhancement Mechanism for Text Sentiment Classification
,”
J. King Saud. Univ-Com.
,
34
(
5
), pp.
2098
2117
.10.1016/j.jksuci.2022.02.025
26.
Turing
,
A. M.
,
1990
, “
The Chemical Basis of Morphogenesis
,”
Bull. Math. Biol.
,
52
(
1–2
), pp.
153
197
.10.1016/S0092-8240(05)80008-4
27.
Xie
,
W. X.
,
Cao
,
S. P.
,
Cai
,
L.
, and
Zhang
,
X.
,
2020
, “
Study on Turing Patterns of Gray-Scott Model Via Amplitude Equation
,”
Int. J. Bifurcat. Chaos
,
30
(
8
), p.
2050121
.10.1142/S0218127420501217
28.
Liu
,
C.
,
Chang
,
L.
,
Huang
,
Y.
, and
Wang
,
Z.
,
2020
, “
Turing Patterns in a Predator-Prey Model on Complex Networks
,”
Nonlinear Dyn.
,
99
(
4
), pp.
3313
3322
.10.1007/s11071-019-05460-1
29.
Iqbal
,
N.
, and
Karaca
,
Y.
,
2021
, “
Complex Fractional-Order HIV Diffusion Model Based on Amplitude Equations With Turing Patterns and Turing Instability
,”
Fractals
,
29
(
5
), p.
2140013
.10.1142/S0218348X21400132
30.
Hu
,
W.
,
Qiao
,
X.
, and
Dong
,
T.
,
2021
, “
Spatiotemporal Dynamic of a Coupled Neutral-Type Neural Network With Time Delay and Diffusion
,”
Neural Comput. Appl.
,
33
(
12
), pp.
6415
6426
.10.1007/s00521-020-05404-6
31.
Wang
,
L.
,
Xiao
,
M.
,
Zhou
,
S.
,
Song
,
Y.
, and
Cao
,
J.
,
2020
, “
Stability and Hopf Bifurcation of Nearest-Neighbor Coupled Neural Networks With Delays
,”
ASME J. Comput. Nonlinear Dynam.
,
15
(
11
), p.
111005
.10.1115/1.4048366
32.
Rui
,
C.
,
Li
,
J.
,
Chen
,
Y.
,
Zhang
,
Q.
,
Yang
,
R.
, and
Queiroz
,
M.
,
2022
, “
Nussbaum-Type Neural Network-Based Control of Neuromuscular Electrical Stimulation With Input Saturation and Muscle Fatigue
,”
ASME J. Comput. Nonlinear Dynam.
,
17
(
3
), p.
031006
.10.1115/1.4053325
33.
Jiang
,
Z.
,
Zhao
,
Y.
,
Bai
,
X.
, and
Zhang
,
Z.
,
2021
, “
Bifurcation and Control of a Planktonic Ecological System With Double Delays by Delayed Feedback Control
,”
J. Franklin I
,
358
(
7
), pp.
3609
3632
.10.1016/j.jfranklin.2021.02.038
34.
Zhang
,
M.
,
Chen
,
L.
, and
Li
,
Z.
,
2019
, “
Homoclinic Bifurcation of a State Feedback Impulsive Controlled Prey–Predator System With Holling–II Functional Response
,”
Nonlinear Dyn.
,
98
(
2
), pp.
929
942
.10.1007/s11071-019-05235-8
35.
Tao
,
B.
,
Xiao
,
M.
,
Jiang
,
G.
, and
Cao
,
J.
,
2020
, “
Stability, Bifurcation Prediction and Optimal Control of a Delayed Integer-Order Small-World Network Based on the Fractional-Order PD Control Policy of Variable Order
,”
J. Franklin I
,
357
(
15
), pp.
10288
10311
.10.1016/j.jfranklin.2020.08.004
36.
Zhou
,
M.
,
Xiang
,
H.
, and
Li
,
Z.
,
2019
, “
Optimal Control Strategies For a Reaction-Diffusion Epidemic System
,”
Nonlinear Anal. Real World Appl.
,
46
, pp.
446
464
.10.1016/j.nonrwa.2018.09.023
37.
Shi
,
S.
,
Xiao
,
M.
,
Rong
,
L.
,
Zheng
,
W.
,
Tao
,
B.
,
Cheng
,
Z.
, and
Xu
,
F.
,
2019
, “
Stability and Bifurcation Control of a Neuron System Under a Novel Fractional–Order PD Controller
,”
Sci. China Tech. Sci.
,
62
(
12
), pp.
2120
2129
.10.1007/s11431-018-9496-x
38.
Han
,
J.
,
Chai
,
J.
, and
Hayashibe
,
M.
,
2021
, “
Synergy Emergence in Deep Reinforcement Learning For Full-Dimensional Arm Manipulation
,”
IEEE Trans. Med. Robot.
,
3
(
2
), pp.
498
509
.10.1109/TMRB.2021.3056924
39.
Liang
,
S.
,
Singh
,
A. N.
,
Zhu
,
Y.
,
Limmer
,
D. T.
, and
Yang
,
C.
,
2023
, “
Probing Reaction Channels Via Reinforcement Learning
,”
Mach. learn. Sci. Technol.
,
4
(
4
), p.
045003
.10.1088/2632-2153/acfc33
40.
Mukherjee
,
S.
,
Chakrabortty
,
A.
,
Bai
,
H.
,
Darvishi
,
A.
, and
Fardanesh
,
B.
,
2021
, “
Scalable Designs for Reinforcement Learning-Based Wide-Area Damping Control
,”
IEEE Trans. Smart Grid
,
12
(
3
), pp.
2389
2401
.10.1109/TSG.2021.3050419
41.
Ding
,
D.
,
Zhang
,
X.
,
Cao
,
J.
,
Wang
,
N.
, and
Liang
,
D.
,
2016
, “
Bifurcation Control of Complex Networks Model Via PD Controller
,”
Neurocomputing
,
175
, pp.
1
9
.10.1016/j.neucom.2015.09.094
42.
Du
,
W.
,
Xiao
,
M.
,
Ding
,
J.
,
Yao
,
Y.
,
Wang
,
Z.
, and
Yang
,
X.
,
2023
, “
Fractional-Order PD Control at Hopf Bifurcation in a Delayed Predator-Prey System With Trans-Species Infectious Diseases
,”
Math. Comput. Simul.
,
205
, pp.
414
438
.10.1016/j.matcom.2022.10.014
43.
Xiao
,
M.
,
Zheng
,
W. X.
,
Lin
,
J.
,
Jiang
,
G.
,
Zhao
,
L.
, and
Cao
,
J.
,
2017
, “
Fractional-Order PD Control at Hopf Bifurcations in Delayed Fractional-Order Small-World Networks
,”
J. Franklin I
,
354
(
17
), pp.
7643
7667
.10.1016/j.jfranklin.2017.09.009
44.
Ouyang
,
Q.
,
2010
,
Nonlinear Science and the Pattern Dynamics Introduction
,
Peking University Press
,
Beijing, China
.
45.
Yang
,
G.
, and
Tang
,
X.
,
2022
, “
Dynamics Analysis of Three-Spieces Reaction-Difussion System Via the Multiplt Scale Perturbatton Method
,”
J. Appl. Anal. Comput.
,
12
, pp.
206
229
.10.11948/20210129
You do not currently have access to this content.