Abstract

We present a tensor-based method for model selection which identifies the unknown partial differential equation that governs a dynamical system using only spatiotemporal measurements. The method circumvents a disadvantage of standard matrix-based methods which typically have large storage consumption. Using a recently developed multidimensional approximation of nonlinear dynamical systems (MANDy), we collect the nonlinear and partial derivative terms of the measured data and construct a low-rank dictionary tensor in the tensor-train (TT) format. A tensor-based linear regression problem is then built, which balances the learning accuracy, model complexity, and computational efficiency. An algebraic expression of the unknown equations can be extracted. Numerical results are demonstrated on datasets generated by the wave equation, the Burgers' equation, and a few parametric partial differential equations (PDEs).

References

1.
Johnson
,
J. B.
, and
Omland
,
K. S.
,
2004
, “
Model Selection in Ecology and Evolution
,”
Trends Ecol. Evol.
,
19
(
2
), pp.
101
108
.10.1016/j.tree.2003.10.013
2.
Chou
,
I.-C.
, and
Voit
,
E. O.
,
2009
, “
Recent Developments in Parameter Estimation and Structure Identification of Biochemical and Genomic Systems
,”
Math. Biosci.
,
219
(
2
), pp.
57
83
.10.1016/j.mbs.2009.03.002
3.
Engl
,
H. W.
,
Flamm
,
C.
,
Kügler
,
P.
,
Lu
,
J.
,
Müller
,
S.
, and
Schuster
,
P.
,
2009
, “
Inverse Problems in Systems Biology
,”
Inverse Probl.
,
25
(
12
), p.
123014
.10.1088/0266-5611/25/12/123014
4.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
5.
Scher
,
S.
, and
Messori
,
G.
,
2018
, “
Predicting Weather Forecast Uncertainty With Machine Learning
,”
Q. J. R. Meteorol. Soc.
,
144
(
717
), pp.
2830
2841
.10.1002/qj.3410
6.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
104
(
24
), pp.
9943
9948
.10.1073/pnas.0609476104
7.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.10.1126/science.1165893
8.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
, pp. 1–24
.https://www.jmlr.org/papers/volume19/18-046/18-046.pdf
9.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
10.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2018
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
, pp.
1
43
.https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
11.
Long
,
Z.
,
Lu
,
Y.
,
Ma
,
X.
, and
Dong
,
B.
,
2018
, “
PDE-Net: Learning PDEs From Data
,”
The 35th International Conference on Machine Learning
, Stockholmsmässan, Stockholm, Sweden, July 10–15, pp.
3208
3216
.https://proceedings.mlr.press/v80/long18a.html
12.
Long
,
Z.
,
Lu
,
Y.
, and
Dong
,
B.
,
2019
, “
PDE-Net 2.0: Learning PDEs From Data With a Numeric-Symbolic Hybrid Deep Network
,”
J. Comput. Phys.
,
399
, p.
108925
.10.1016/j.jcp.2019.108925
13.
Sun
,
Y.
,
Zhang
,
L.
, and
Schaeffer
,
H.
,
2020
, “
NeuPDE: Neural Network Based Ordinary and Partial Differential Equations for Modeling Time-Dependent Data
,” The 1st
Mathematical and Scientific Machine Learning Conference
, Princeton University, Princeton, NJ, July 20–24, pp.
352
372
.https://proceedings.mlr.press/v107/sun20a.html
14.
Xu
,
H.
,
Chang
,
H.
, and
Zhang
,
D.
,
2020
, “
DLGA-PDE: Discovery of PDEs With Incomplete Candidate Library Via Combination of Deep Learning and Genetic Algorithm
,”
J. Comput. Phys.
,
418
, p.
109584
.10.1016/j.jcp.2020.109584
15.
Chen
,
Y.
,
Luo
,
Y.
,
Liu
,
Q.
,
Xu
,
H.
, and
Zhang
,
D.
,
2022
, “
Symbolic Genetic Algorithm for Discovering Open-Form Partial Differential Equations (SGA-PDE)
,”
Phys. Rev. Res.
,
4
(
2
), p.
023174
.10.1103/PhysRevResearch.4.023174
16.
Chen
,
P.
,
Liu
,
R.
,
Aihara
,
K.
, and
Chen
,
L.
,
2020
, “
Autoreservoir Computing for Multistep Ahead Prediction Based on the Spatiotemporal Information Transformation
,”
Nat. Commun.
,
11
(
1
), p.
4568
.10.1038/s41467-020-18381-0
17.
Wu
,
K.
, and
Xiu
,
D.
,
2020
, “
Data-Driven Deep Learning of Partial Differential Equations in Modal Space
,”
J. Comput. Phys.
,
408
, p.
109307
.10.1016/j.jcp.2020.109307
18.
Patel
,
R. G.
,
Trask
,
N. A.
,
Wood
,
M. A.
, and
Cyr
,
E. C.
,
2021
, “
A Physics-Informed Operator Regression Framework for Extracting Data-Driven Continuum Models
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113500
.10.1016/j.cma.2020.113500
19.
Chen
,
Z.
, and
Xiu
,
D.
,
2021
, “
On Generalized Residual Network for Deep Learning of Unknown Dynamical Systems
,”
J. Comput. Phys.
,
438
, p.
110362
.10.1016/j.jcp.2021.110362
20.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
21.
Rudy
,
S. H.
,
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2017
, “
Data-Driven Discovery of Partial Differential Equations
,”
Sci. Adv.
,
3
(
4
), p.
e1602614
.10.1126/sciadv.1602614
22.
Schaeffer
,
H.
,
2017
, “
Learning Partial Differential Equations Via Data Discovery and Sparse Optimization
,”
Proc. R. Soc. A
,
473
(
2197
), p.
20160446
.10.1098/rspa.2016.0446
23.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-Data Limit
,”
Proc. R. Soc. A
,
474
(
2219
), p.
20180335
.10.1098/rspa.2018.0335
24.
Fasel
,
U.
,
Kaiser
,
E.
,
Kutz
,
J. N.
,
Brunton
,
B. W.
, and
Brunton
,
S. L.
,
2021
, “
SINDy With Control: A Tutorial
,”
The 60th IEEE Conference on Decision and Control
, Austin, TX, Dec 14–17, pp.
16
21
.10.1109/CDC45484.2021.9683120
25.
Mangan
,
N. M.
,
Kutz
,
J. N.
,
Brunton
,
S. L.
, and
Proctor
,
J. L.
,
2017
, “
Model Selection for Dynamical Systems Via Sparse Regression and Information Criteria
,”
Proc. R. Soc. A
,
473
(
2204
), p.
20170009
.10.1098/rspa.2017.0009
26.
Li
,
X.
,
Li
,
L.
,
Yue
,
Z.
,
Tang
,
X.
,
Voss
,
H. U.
,
Kurths
,
J.
, and
Yuan
,
Y.
,
2019
, “
Sparse Learning of Partial Differential Equations With Structured Dictionary Matrix
,”
Chaos
,
29
(
4
), p.
043130
.10.1063/1.5054708
27.
Rudy
,
S.
,
Alla
,
A.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
, “
Data-Driven Identification of Parametric Partial Differential Equations
,”
SIAM J. Appl. Dyn. Syst.
,
18
(
2
), pp.
643
660
.10.1137/18M1191944
28.
Ma
,
H.
,
Lu
,
X.
, and
Zhang
,
L.
,
2023
, “
Extracting Parametric Dynamics From Time-Series Data
,”
Nonlinear Dyn.
,
111
(
16
), pp.
15177
15199
.10.1007/s11071-023-08643-z
29.
Schaeffer
,
H.
, and
McCalla
,
S. G.
,
2017
, “
Sparse Model Selection Via Integral Terms
,”
Phys. Rev. E
,
96
(
2
), p.
023302
.10.1103/PhysRevE.96.023302
30.
Messenger
,
D. A.
, and
Bortz
,
D. M.
,
2021
, “
Weak SINDy: Galerkin-Based Data-Driven Model Selection
,”
Multiscale Model. Simul.
,
19
(
3
), pp.
1474
1497
.10.1137/20M1343166
31.
Schaeffer
,
H.
,
Tran
,
G.
, and
Ward
,
R.
,
2018
, “
Extracting Sparse High-Dimensional Dynamics From Limited Data
,”
SIAM J. Appl. Math.
,
78
(
6
), pp.
3279
3295
.10.1137/18M116798X
32.
Schaeffer
,
H.
,
Tran
,
G.
,
Ward
,
R.
, and
Zhang
,
L.
,
2020
, “
Extracting Structured Dynamical Systems Using Sparse Optimization With Very Few Samples
,”
Multiscale Model. Simul.
,
18
(
4
), pp.
1435
1461
.10.1137/18M1194730
33.
Gelß
,
P.
,
Klus
,
S.
,
Eisert
,
J.
, and
Schütte
,
C.
,
2019
, “
Multidimensional Approximation of Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061006
.10.1115/1.4043148
34.
Oseledets
,
I. V.
, and
Tyrtyshnikov
,
E. E.
,
2009
, “
Breaking the Curse of Dimensionality, or How to Use SVD in Many Dimensions
,”
SIAM J. Sci. Comput.
,
31
(
5
), pp.
3744
3759
.10.1137/090748330
35.
Oseledets
,
I. V.
,
2011
, “
Tensor-Train Decomposition
,”
SIAM J. Sci. Comput.
,
33
(
5
), pp.
2295
2317
.10.1137/090752286
36.
White
,
S. R.
,
1992
, “
Density Matrix Formulation for Quantum Renormalization Groups
,”
Phys. Rev. Lett.
,
69
(
19
), pp.
2863
2866
.10.1103/PhysRevLett.69.2863
37.
Verstraete
,
F.
,
Murg
,
V.
, and
Cirac
,
J. I.
,
2008
, “
Matrix Product States, Projected Entangled Pair States, and Variational Renormalization Group Methods for Quantum Spin Systems
,”
Adv. Phys.
,
57
(
2
), pp.
143
224
.10.1080/14789940801912366
38.
Orús
,
R.
,
2014
, “
A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States
,”
Ann. Phys.
,
349
, pp.
117
158
.10.1016/j.aop.2014.06.013
39.
Bengua
,
J. A.
,
Phien
,
H. N.
,
Tuan
,
H. D.
, and
Do
,
M. N.
,
2017
, “
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train
,”
IEEE Trans. Image Process.
,
26
(
5
), pp.
2466
2479
.10.1109/TIP.2017.2672439
40.
Klus
,
S.
, and
Gelß
,
P.
,
2019
, “
Tensor-Based Algorithms for Image Classification
,”
Algorithms
,
12
(
11
), p.
240
.10.3390/a12110240
41.
Jahnke
,
T.
, and
Huisinga
,
W.
,
2008
, “
A Dynamical Low-Rank Approach to the Chemical Master Equation
,”
Bull. Math. Biol.
,
70
(
8
), pp.
2283
2302
.10.1007/s11538-008-9346-x
42.
Gelß
,
P.
,
Matera
,
S.
, and
Schütte
,
C.
,
2016
, “
Solving the Master Equation Without Kinetic Monte Carlo: Tensor Train Approximations for a CO Oxidation Model
,”
J. Comput. Phys.
,
314
, pp.
489
502
.10.1016/j.jcp.2016.03.025
43.
Carroll
,
J. D.
, and
Chang
,
J.-J.
,
1970
, “
Analysis of Individual Differences in Multidimensional Scaling Via an n-Way Generalization of “Eckart-Young” Decomposition
,”
Psychometrika
,
35
(
3
), pp.
283
319
.10.1007/BF02310791
44.
Tucker
,
L. R.
,
1963
, “
Implications of Factor Analysis of Three-Way Matrices for Measurement of Change
,”
Probl. Meas. Change
,
15
, pp.
122
137
.https://www.bibsonomy.org/bibtex/1e6c2d14ddb42cb2012afaeb8ab1d19aa/threemode
45.
Tucker
,
L. R.
,
1964
, “
The Extension of Factor Analysis to Three-Dimensional Matrices
,”
Contrib. Math. Psychol.
,
110119
, pp.
110
182
.https://www.scienceopen.com/document?vid=4096120e-f38d-4e74-ad8d-c278b4da697f
46.
Hackbusch
,
W.
, and
Kühn
,
S.
,
2009
, “
A New Scheme for the Tensor Representation
,”
J. Fourier Anal. Appl.
,
15
(
5
), pp.
706
722
.10.1007/s00041-009-9094-9
47.
Lubich
,
C.
,
Rohwedder
,
T.
,
Schneider
,
R.
, and
Vandereycken
,
B.
,
2013
, “
Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors
,”
SIAM J. Matrix Anal. Appl.
,
34
(
2
), pp.
470
494
.10.1137/120885723
48.
Kiers
,
H. A.
,
2000
, “
Towards a Standardized Notation and Terminology in Multiway Analysis
,”
J. Chemom.
,
14
(
3
), pp.
105
122
.10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
49.
Klus
,
S.
,
Gelß
,
P.
,
Peitz
,
S.
, and
Schütte
,
C.
,
2018
, “
Tensor-Based Dynamic Mode Decomposition
,”
Nonlinearity
,
31
(
7
), pp.
3359
3380
.10.1088/1361-6544/aabc8f
50.
Trefethen
,
L. N.
,
2000
, “Spectral Methods in MATLAB,”
Society for Industrial and Applied Mathematics
, Philadelphia, PA.10.1137/1.9780898719598
51.
He
,
L.
,
Chen
,
K.
,
Xu
,
W.
,
Zhou
,
J.
, and
Wang
,
F.
,
2018
, “
Boosted Sparse and Low-Rank Tensor Regression
,”
The 32nd Conference on Neural Information Processing Systems
, Montréal, QC, Canada, Dec. 2–8.https://papers.nips.cc/paper_files/paper/2018/hash/8d34201a5b85900908db6cae92723617-Abstract.html
52.
Ahmed
,
T.
,
Raja
,
H.
, and
Bajwa
,
W. U.
,
2020
, “
Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
,”
SIAM J. Math. Data Sci.
,
2
(
4
), pp.
944
966
.10.1137/19M1299335
53.
Ou-Yang
,
L.
,
Zhang
,
X.-F.
, and
Yan
,
H.
,
2020
, “
Sparse Regularized Low-Rank Tensor Regression With Applications in Genomic Data Analysis
,”
Pattern Recognit.
,
107
, p.
107516
.10.1016/j.patcog.2020.107516
54.
Zhang
,
L.
, and
Schaeffer
,
H.
,
2019
, “
On the Convergence of the SINDy Algorithm
,”
Multiscale Model. Simul.
,
17
(
3
), pp.
948
972
.10.1137/18M1189828
55.
Lu
,
X.
,
Ma
,
H.
, and
Zhang
,
L.
,
2023
, “
Model Selection Via Reweighted Partial Sparse Recovery
,”
J. Comput. Appl. Math.
,
438
, p.
115553
.10.1016/j.cam.2023.115553
You do not currently have access to this content.