Abstract

The slipper is the critical component of a supersonic rocket sled that is in contact with the track. Due to clearance and contact effects, the supersonic slipper–track system displays pronounced nonlinearities. A comprehensive analysis, including bifurcation and chaos detection, is conducted on this system to predict the nonlinear behavior of the slipper. Kinematic and dynamic models of the system are established using the generalized coordinate and Lagrange multiplier methods. This model accounts for slipper–track clearances, track irregularities, and normal contact forces. The dynamic response of the slipper is examined both in time and frequency domain. The bifurcation analysis encompasses various parameters such as slipper velocity and length, and slipper–track clearance. Chaos identification is employed for both qualitative and quantitative assessments, utilizing phase diagrams, Poincaré sections, the trajectory of the slipper's center, and the largest Lyapunov exponent (LLE). The findings revealed significant nonlinear phenomena, including self-excited vibrations, superharmonic responses, jumping phenomena, strange attractors, and combined frequencies. Notably, this study demonstrated the potential for leveraging chaotic response to mitigate the contact forces on the slipper. These insights contribute to the rationalization of control parameters and the optimization of slipper and track design.

References

1.
Dang
,
T.
,
Li
,
B.
,
Hu
,
D.
,
Sun
,
Y.
, and
Liu
,
Z.
,
2021
, “
Aerodynamic Design Optimization of a Hypersonic Rocket Sled Deflector Using the Free-Form Deformation Technique
,”
Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
,
235
(
15
), pp.
2240
2248
.10.1177/0954410021994984
2.
Walia
,
S.
,
Satya
,
V.
,
Malik
,
S.
,
Chander
,
S.
,
Devi
,
S.
, and
Sharma
,
A. C.
,
2022
, “
Rocket Sled Based High Speed Rail Track Test Facilities: A Review
,”
Def. Sci. J.
,
72
(
2
), pp.
182
194
.10.14429/dsj.72.17014
3.
Salahshoor
,
E.
,
Ebrahimi
,
S.
, and
Zhang
,
Y.
,
2018
, “
Frequency Analysis of a Typical Planar Flexible Multibody System With Joint Clearances
,”
Mech. Mach. Theory
,
126
, pp.
429
456
.10.1016/j.mechmachtheory.2018.04.027
4.
Xiao
,
M.
,
Geng
,
G.
,
Li
,
G.
,
Li
,
H.
, and
Ma
,
R.
,
2017
, “
Analysis on Dynamic Precision Reliability of High-Speed Precision Press Based on Monte Carlo Method
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2979
2988
.10.1007/s11071-017-3857-7
5.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.10.1016/j.mechmachtheory.2017.12.002
6.
Amiri
,
A.
,
Dardel
,
M.
, and
Daniali
,
H. M.
,
2019
, “
Effects of Passive Vibration Absorbers on the Mechanisms Having Clearance Joints
,”
Multibody Syst. Dyn.
,
47
(
4
), pp.
363
395
.10.1007/s11044-019-09684-2
7.
Wu
,
L.
,
Marghitu
,
D. B.
, and
Zhao
,
J.
,
2017
, “
Nonlinear Dynamics Response of a Planar Mechanism With Two Driving Links and Prismatic Pair Clearance
,”
Math. Probl. Eng.
,
2017
, pp.
1
12
.10.1155/2017/4295805
8.
Song
,
N.
,
Peng
,
H.
, and
Kan
,
Z.
,
2022
, “
Nonsmooth Strategy for Rigid-Flexible Multibody System Considering Different Types of Clearance Joints and Lubrication
,”
Multibody Syst. Dyn.
,
55
(
3
), pp.
341
374
.10.1007/s11044-022-09827-y
9.
Xiao
,
S.
,
Liu
,
S.
,
Wang
,
H.
,
Lin
,
Y.
,
Song
,
M.
, and
Zhang
,
H.
,
2020
, “
Nonlinear Dynamics of Coupling Rub-Impact of Double Translational Joints With Subsidence Considering the Flexibility of Piston Rod
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1203
1229
.10.1007/s11071-020-05566-x
10.
Stoenescu
,
E. D.
, and
Marghitu
,
D. B.
,
2003
, “
Dynamic Analysis of a Planar Rigid-Link Mechanism With Rotating Slider Joint and Clearance
,”
J. Sound Vib.
,
266
(
2
), pp.
394
404
.10.1016/S0022-460X(03)00053-1
11.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2008
, “
Translational Joints With Clearance in Rigid Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011007
.10.1115/1.2802113
12.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2010
, “
Modeling and Analysis of Rigid Multibody Systems With Translational Clearance Joints Based on the Nonsmooth Dynamics Approach
,”
Multibody Syst. Dyn.
,
23
, pp.
165
190
.10.1007/s11044-009-9178-y
13.
Chen
,
X.
,
Jiang
,
S.
, and
Deng
,
Y.
,
2020
, “
Dynamic Responses of Planar Multilink Mechanism Considering Mixed Clearances
,”
Shock Vib.
,
2020
, pp.
1
18
.10.1155/2020/8725845
14.
Wu
,
X.
,
Sun
,
Y.
,
Wang
,
Y.
, and
Chen
,
Y.
,
2021
, “
Correlation Dimension and Bifurcation Analysis for the Planar Slider-Crank Mechanism With Multiple Clearance Joints
,”
Multibody Syst. Dyn.
,
52
(
1
), pp.
95
116
.10.1007/s11044-020-09769-3
15.
Xiao
,
L.
,
Yan
,
F.
,
Chen
,
T.
,
Zhang
,
S.
, and
Jiang
,
S.
,
2023
, “
Study on Nonlinear Dynamics of Rigid-Flexible Coupling Multi-Link Mechanism Considering Various Kinds of Clearances
,”
Nonlinear Dyn.
,
111
(
4
), pp.
3279
3306
.10.1007/s11071-022-08033-x
16.
Zhuang
,
F.
, and
Wang
,
Q.
,
2013
, “
Modeling and Simulation of the Nonsmooth Planar Rigid Multibody Systems With Frictional Translational Joints
,”
Multibody Syst. Dyn.
,
29
(
4
), pp.
403
423
.10.1007/s11044-012-9328-5
17.
Zhang
,
J.
, and
Wang
,
Q.
,
2016
, “
Modeling and Simulation of a Frictional Translational Joint With a Flexible Slider and Clearance
,”
Multibody Syst. Dyn.
,
38
(
4
), pp.
367
389
.10.1007/s11044-015-9474-7
18.
Zheng
,
X.
,
Li
,
J.
,
Wang
,
Q.
, and
Liao
,
Q.
,
2019
, “
A Methodology for Modeling and Simulating Frictional Translational Clearance Joint in Multibody Systems Including a Flexible Slider Part
,”
Mech. Mach. Theory
,
142
, p.
103603
.10.1016/j.mechmachtheory.2019.103603
19.
Wu
,
X.
,
Sun
,
Y.
,
Wang
,
Y.
, and
Chen
,
Y.
,
2020
, “
Dynamic Analysis of the Double Crank Mechanism With a 3D Translational Clearance Joint Employing a Variable Stiffness Contact Force Model
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1937
1958
.10.1007/s11071-019-05419-2
20.
Qian
,
M.
,
Qin
,
Z.
,
Yan
,
S.
, and
Zhang
,
L.
,
2020
, “
A Comprehensive Method for the Contact Detection of a Translational Clearance Joint and Dynamic Response After Its Application in a Crank-Slider Mechanism
,”
Mech. Mach. Theory
,
145
, p.
103717
.10.1016/j.mechmachtheory.2019.103717
21.
Qi
,
Z.
,
Luo
,
X.
, and
Huang
,
Z.
,
2011
, “
Frictional Contact Analysis of Spatial Prismatic Joints in Multibody Systems
,”
Multibody Syst. Dyn.
,
26
(
4
), pp.
441
468
.10.1007/s11044-011-9264-9
22.
Xu
,
M.
,
Li
,
C.
,
Sun
,
Y.
,
Yang
,
T.
,
Zhang
,
H.
,
Liu
,
Z.
,
Liu
,
H.
,
Li
,
Z.
, and
Zhang
,
Y.
,
2021
, “
Model and Nonlinear Dynamic Analysis of Linear Guideway Subjected to External Periodic Excitation in Five Directions
,”
Nonlinear Dyn.
,
105
(
4
), pp.
3061
3092
.10.1007/s11071-021-06796-3
23.
Liu
,
Z.
,
Xu
,
M.
,
Zhang
,
H.
,
Li
,
C.
,
Yao
,
G.
,
Li
,
Z.
,
Miao
,
H.
,
Wang
,
C.
, and
Zhang
,
Y.
,
2022
, “
Modeling and Analyzing of Nonlinear Dynamics for Linear Guide Slide Platform Considering Assembly Error
,”
Nonlinear Dyn.
,
108
(
3
), pp.
2193
2221
.10.1007/s11071-022-07345-2
24.
Xu
,
M.
,
Li
,
C.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2021
, “
A Comprehensive Nonlinear Dynamic Model for Ball Screw Feed System With Rolling Joint Characteristics
,”
Nonlinear Dyn.
,
106
(
1
), pp.
169
210
.10.1007/s11071-021-06815-3
25.
Zeng
,
X. H.
,
Shi
,
H. M.
, and
Wu
,
H.
,
2021
, “
Nonlinear Dynamic Responses of High-Speed Railway Vehicles Under Combined Self-Excitation and Forced Excitation Considering the Influence of Unsteady Aerodynamic Loads
,”
Nonlinear Dyn.
,
105
(
4
), pp.
3025
3060
.10.1007/s11071-021-06795-4
26.
Wang
,
X.
,
Lu
,
Z.
,
Wen
,
J.
,
Wei
,
J.
, and
Wang
,
Z.
,
2022
, “
Kinematics Modelling and Numerical Investigation on the Hunting Oscillation of Wheel–Rail Nonlinear Geometric Contact System
,”
Nonlinear Dyn.
,
107
(
3
), pp.
2075
2097
.10.1007/s11071-021-07103-w
27.
Guo
,
J.
,
Shi
,
H.
,
Luo
,
R.
, and
Zeng
,
J.
,
2021
, “
Bifurcation Analysis of a Railway Wheelset With Nonlinear Wheel–Rail Contact
,”
Nonlinear Dyn.
,
104
(
2
), pp.
989
1005
.10.1007/s11071-021-06373-8
28.
Zboinski
,
K.
, and
Dusza
,
M.
,
2017
, “
Bifurcation Analysis of 4-Axle Rail Vehicle Models in a Curved Track
,”
Nonlinear Dyn.
,
89
(
2
), pp.
863
885
.10.1007/s11071-017-3489-y
29.
Xiao
,
J.
,
Zhang
,
W. W.
,
Xue
,
Q.
,
Gao
,
W. B.
, and
Zhang
,
L. R.
,
2019
, “
Analysis of Boot Rail Collision Resistance in Rocket Sled Test System
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
657
(
1
), p.
012028
.10.1088/1757-899X/657/1/012028
30.
Turnbull
,
D.
,
Hooser
,
C.
,
Hooser
,
M.
, and
Myers
,
J.
,
2010
, “
Soft Sled Test Capability at the Holloman High Speed Test Track
,”
AIAA
Paper No. 2010-1708.10.2514/6.2010-1708
31.
Dang
,
T.
,
Liu
,
Z.
,
Zhou
,
X.
,
Sun
,
Y.
, and
Zhao
,
P.
,
2022
, “
Dynamic Response of a Hypersonic Rocket Sled Considering Friction and Wear
,”
J. Spacecr. Rockets
,
59
(
4
), pp.
1289
1303
.10.2514/1.A35267
32.
Dang
,
T.
,
Morandini
,
M.
,
Masarati
,
P.
,
Liu
,
Z.
, and
Zhou
,
J.
,
2023
, “
Efficient Computational Method for Multibody Dynamics of Supersonic Intermittent Contact System
,”
11th ECCOMAS Thematic Conference on Multibody Dynamics
, Lisbon, Portugal, July 24–28, pp.
1
7
. https://re.public.polimi.it/bitstream/11311/1247480/1/DANGT01-23.pdf
33.
Hooser
,
M.
,
2018
, “
Soft Sled—The Low Vibration Sled Test Capability at the Holloman High Speed Test Track
,” Aerodynamic Measurement Technology and Ground Testing Conference,
AIAA
Paper No. 2018-3872.10.2514/6.2018-3872
34.
Liu
,
J.
,
Zhao
,
H.
,
Gu
,
K.
, and
Wang
,
W.
,
2017
, “
An Analysis of Dynamic Response of a Rocket Sled
,”
2017 Second International Conference on Artificial Intelligence and Engineering Applications
, Guilin, China, Sept. 23–24, pp.
956
967
.https://scholar.archive.org/work/p4slcw4ds5db5kafqihx2s7fou/access/wayback/http://dpi-proceedings.com/index.php/dtcse/article/download/15034/14547
35.
Zhang
,
J. H.
, and
Jiang
,
S. S.
,
2011
, “
Rigid-Flexible Coupling Model and Dynamic Analysis of Rocket Sled
,”
Adv. Mater. Res.
,
346
, pp.
447
454
.10.4028/www.scientific.net/AMR.346.447
36.
Li
,
H.
,
Yan
,
H.
,
Hu
,
B.
, and
Yang
,
M.
,
2020
, “
Research on Calibration Method and Effect Evaluation of Rocket Sled Track Profile Irregularity
,”
Seventh International Forum on Electrical Engineering and Automation
, Hefei, China, Sept. 25–27, pp.
203
206
.10.1109/IFEEA51475.2020.00049
37.
Chen
,
S. Y.
,
He
,
Y. L.
, and
Li
,
Z. W.
,
2014
, “
Analysis of the Rocket Sled Track Irregularity in Time and Frequency Domains
,”
CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems
, Changsha, China, July 4–7, pp.
111
118
.10.1061/9780784413623.0
38.
Yadav
,
A.
,
Jain
,
A.
, and
Chander
,
S.
,
2021
, “
Modelling and Analysis of Pivoted Slipper and Its Component at 40 Ton Load
,”
Adv. Eng. Des.-Sel. Proc. ICOIED
,
2020
, pp.
373
383
.10.1007/978-981-33-4018-3_35
39.
Gerasimov
,
S. I.
,
Erofeev
,
V. I.
,
Kamchatnyi
,
V. G.
, and
Odzerikho
,
I. A.
,
2018
, “
The Sliding Contact Condition in Stability Analysis of Stage Motion for a Rocket Sled Track Facility
,”
J. Mach. Manuf. Reliab.
,
47
(
3
), pp.
221
226
.10.3103/S105261881803007X
40.
Corral
,
E.
,
Moreno
,
R. G.
,
García
,
M. G.
, and
Castejón
,
C.
,
2021
, “
Nonlinear Phenomena of Contact in Multibody Systems Dynamics: A Review
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1269
1295
.10.1007/s11071-021-06344-z
41.
Magalhães
,
H.
,
Marques
,
F.
,
Liu
,
B.
,
Antunes
,
P.
,
Pombo
,
J.
,
Flores
,
P.
,
Ambrósio
,
J.
,
Piotrowski
,
J.
, and
Bruni
,
S.
,
2020
, “
Implementation of a Non-Hertzian Contact Model for Railway Dynamic Application
,”
Multibody Syst. Dyn.
,
48
(
1
), pp.
41
78
.10.1007/s11044-019-09688-y
42.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modelling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.10.1007/s11071-013-1215-y
43.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.10.1007/s11044-010-9237-4
44.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
45.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
(
2
), pp.
193
207
.10.1007/BF00045676
46.
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2014
, “
An Efficient Formulation for General-Purpose Multibody/Multiphysics Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041001
.10.1115/1.4025628
47.
Zhang
,
H.
,
Zhang
,
R.
,
Zanoni
,
A.
, and
Masarati
,
P.
,
2022
, “
Performance of Implicit A-Stable Time Integration Methods for Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
54
(
3
), pp.
263
301
.10.1007/s11044-021-09806-9
48.
Lyapunov
,
A. M.
,
1992
, “
The General Problem of the Stability of Motion
,”
Int. J. Control
,
55
(
3
), pp.
531
534
.10.1080/00207179208934253
You do not currently have access to this content.