Abstract

In recent years, the study of mathematical models for the human immunodeficiency virus (HIV) has attracted considerable interest due to its importance in comprehending and combating the propagation of the virus. Typically, the model's governing equations are a system of ordinary differential equations. In order to explain the inheritance behavior, fractional order HIV models may be more helpful than integer order models. In addition, the presence of uncertainty in real-world phenomena can not be avoided, and fuzzy numbers are of great use in these scenarios. In view of the above, the numerical solution of the fuzzy fractional order HIV model is analyzed in this paper. The model takes into account the interactions between susceptible, asymptomatic, and symptomatic populations, as well as the effects of fractional order derivatives and fuzzy uncertainty. Here, the differentiation of the fuzzy parameters is considered in granular sense. The uncertain model parameters are addressed with triangular fuzzy numbers (TFNs) and interval type-2 triangular fuzzy numbers (IT2TFNs). The use of interval type-2 fuzzy numbers rather than type-1 fuzzy numbers to express the imprecise parameters may be helpful in some instances where the membership grade is unclear. The generalized modified Euler method (GMEM) is used to derive the corresponding solutions. Lastly, the behavior of various populations in crisp as well as uncertain environments is also studied using graphical results.

References

1.
World Health Organization
,
2023
, “
World Health Organization, Hiv Data and Statistics
,”
World Health Organization
,
Geneva, Switzerland
, accessed Aug. 9, 2023, https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics
2.
Perelson
,
A.
,
1989
, “
Mathematical and Statistical Approaches to AIDS Epidemiology
,” Lecture Notes in Biomathetics,
Springer-Verlag
,
NY
, pp.
350
370
.
3.
Perelson
,
A. S.
,
Kirschner
,
D. E.
, and
De Boer
,
R.
,
1993
, “
Dynamics of HIV Infection of CD4+ t Cells
,”
Math. Biosci.
,
114
(
1
), pp.
81
125
.10.1016/0025-5564(93)90043-A
4.
Theys
,
K.
,
Libin
,
P.
,
Pineda-Pena
,
A.-C.
,
Nowe
,
A.
,
Vandamme
,
A.-M.
, and
Abecasis
,
A. B.
,
2018
, “
The Impact of HIV-1 Within-Host Evolution on Transmission Dynamics
,”
Curr. Opinion Virology
,
28
, pp.
92
101
.10.1016/j.coviro.2017.12.001
5.
Beler
,
A.
,
Şimşek
,
G. Ö.
, and
Gümgüm
,
S.
,
2023
, “
Numerical Solutions of the Hiv Infection Model of CD4 (+) Cells by Laguerre Wavelets
,”
Math. Comput. Simul.
,
209
, pp.
205
219
.10.1016/j.matcom.2023.02.016
6.
Sohaib
,
M.
,
2020
, “
Mathematical Modeling and Numerical Simulation of HIV Infection Model
,”
Results Appl. Math.
,
7
, p.
100118
.10.1016/j.rinam.2020.100118
7.
Ghoreishi
,
M.
,
Ismail
,
A. M.
, and
Alomari
,
A.
,
2011
, “
Application of the Homotopy Analysis Method for Solving a Model for HIV Infection of CD4+ t-Cells
,”
Math. Comput. Modell.
,
54
(
11–12
), pp.
3007
3015
.10.1016/j.mcm.2011.07.029
8.
Yüzbaş I
,
Ş.
,
2012
, “
A Numerical Approach to Solve the Model for HIV Infection of CD4+ t Cells
,”
Appl. Math. Modell.
,
36
(
12
), pp.
5876
5890
.10.1016/j.apm.2011.12.021
9.
Amin
,
R.
,
Yüzbası
,
Ş.
, and
Nazir
,
S.
,
2022
, “
Efficient Numerical Scheme for the Solution of Hiv Infection CD4+ t-Cells Using Haar Wavelet Technique
,”
Comput. Model. Eng. Sci.
,
131
(
2
), pp.
639
653
.10.32604/cmes.2022.019154
10.
Hoan
,
L. V. C.
,
Akinlar
,
M. A.
,
Inc
,
M.
,
Gómez-Aguilar
,
J.
,
Chu
,
Y.-M.
, and
Almohsen
,
B.
,
2020
, “
A New Fractional-Order Compartmental Disease Model
,”
Alexandria Eng. J.
,
59
(
5
), pp.
3187
3196
.10.1016/j.aej.2020.07.040
11.
Zeb
,
A.
,
Atangana
,
A.
,
Khan
,
Z. A.
, and
Djillali
,
S.
,
2022
, “
A Robust Study of a Piecewise Fractional Order Covid-19 Mathematical Model
,”
Alexandria Eng. J.
,
61
(
7
), pp.
5649
5665
.10.1016/j.aej.2021.11.039
12.
Jena
,
R. M.
,
Chakraverty
,
S.
,
Yavuz
,
M.
, and
Abdeljawad
,
T.
,
2021
, “
A New Modeling and Existence–Uniqueness Analysis for Babesiosis Disease of Fractional Order
,”
Mod. Phys. Lett. B
,
35
(
30
), p.
2150443
.10.1142/S0217984921504431
13.
Chakraverty
,
S.
,
Jena
,
R. M.
, and
Jena
,
S. K.
,
2020
,
Time-Fractional Order Biological Systems With Uncertain Parameters
, Vol.
12
,
Springer
,
Germany
.
14.
Al Basir
,
F.
, and
Roy
,
P. K.
,
2017
, “
Stability Analysis and Optimal Control of a Fractional Order Model for HIV Infection
,”
WSEAS Trans. Math
,
16
, pp.
152
–1
62
.https://www.researchgate.net/publication/316991346_Stability_Analysis_and_Optimal_Control_of_a_Fractional_Order_Model_for_HIV_Infection
15.
A.
,
Khan
,
J.
,
Gómez-Aguilar
,
T. S.
,
Khan
., and
H.
,
Khan
,
2019
, “
Stability Analysis and Numerical Solutions of Fractional Order HIV/AIDS Model
,”
Chaos, Solitons Fractals
,
122
, pp.
119
128
.10.1016/j.chaos.2019.03.022
16.
Tamilalagan
,
P.
,
Karthiga
,
S.
, and
Manivannan
,
P.
,
2021
, “
Dynamics of Fractional Order HIV Infection Model With Antibody and Cytotoxic t-Lymphocyte Immune Responses
,”
J. Comput. Appl. Math.
,
382
, p.
113064
.10.1016/j.cam.2020.113064
17.
Silva
,
C. J.
, and
Torres
,
D. F.
,
2019
, “
Stability of a Fractional HIV/AIDS Model
,”
Math. Comput. Simul.
,
164
, pp.
180
190
.10.1016/j.matcom.2019.03.016
18.
Singh
,
H.
,
2021
, “
Analysis of Drug Treatment of the Fractional Hiv Infection Model of CD4+ t-Cells
,”
Chaos, Solitons Fractals
,
146
, p.
110868
.10.1016/j.chaos.2021.110868
19.
H.
,
Khan
,
J.
,
Gómez-Aguilar
,
A.
,
Alkhazzan
, and
Khan
,
A.
,
2020
, “
Fractional Order HIV-TB Coinfection Model With Nonsingular Mittag-Leffler Law
,”
Math. Methods Appl. Sci.
,
43
(
6
), pp.
3786
3806
.10.1002/mma.6155
20.
Boukhouima
,
A.
,
Hattaf
,
K.
,
Lotfi
,
E. M.
,
Mahrouf
,
M.
,
Torres
,
D. F.
, and
Yousfi
,
N.
,
2020
, “
Lyapunov Functions for Fractional-Order Systems in Biology: Methods and Applications
,”
Chaos, Solitons Fractals
,
140
, p.
110224
.10.1016/j.chaos.2020.110224
21.
Naik
,
P. A.
,
Owolabi
,
K. M.
,
Yavuz
,
M.
, and
Zu
,
J.
,
2020
, “
Chaotic Dynamics of a Fractional Order HIV-1 Model Involving AIDS-Related Cancer Cells
,”
Chaos, Solitons Fractals
,
140
, p.
110272
.10.1016/j.chaos.2020.110272
22.
Zhao
,
Y.
,
Elattar
,
E. E.
,
Khan
,
M. A.
,
Asiri
,
M.
,
Sunthrayuth
,
P.
, and
Fatmawati
,
2022
, “
The Dynamics of the HIV/AIDS Infection in the Framework of Piecewise Fractional Differential Equation
,”
Results Phys.
,
40
, p.
105842
.10.1016/j.rinp.2022.105842
23.
Noeiaghdam
,
S.
, and
Sidorov
,
D.
,
2022
, “
Application of the stochastic arithmetic to validate the results of nonlinear fractional model of HIV infection for CD8+ t-cells
,”
Mathematical Analysis of Infectious Diseases
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
259
285
.
24.
Ahmad
,
A.
,
Ahmad
,
I.
,
Ali
,
R.
, and
Ibrahim
,
M.
,
2023
, “
On Analysis of Fractional Order HIV Infection Model With the Adaptive Immune Response Under Caputo Operator
,”
J. Appl. Math. Comput.
,
69
(
2
), pp.
1845
1863
.10.1007/s12190-022-01804-0
25.
Li
,
Y.-M.
,
Ullah
,
S.
,
Khan
,
M. A.
,
Alshahrani
,
M. Y.
, and
Muhammad
,
T.
,
2021
, “
Modeling and Analysis of the Dynamics of HIV/AIDS With Non-Singular Fractional and Fractal-Fractional Operators
,”
Phys. Scr.
,
96
(
11
), p.
114008
.10.1088/1402-4896/ac15c3
26.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.10.1016/S0019-9958(65)90241-X
27.
Goetschel
,
R.
, Jr.
, and
Voxman
,
W.
,
1986
, “
Elementary Fuzzy Calculus
,”
Fuzzy Sets Systems
,
18
(
1
), pp.
31
43
.10.1016/0165-0114(86)90026-6
28.
Chakraverty
,
S.
,
Sahoo
,
D. M.
, and
Mahato
,
N. R.
,
2019
,
Concepts of Soft Computing
,
Springer
,
Singapore
, pp.
978
981
.
29.
Rao
,
P.
,
Roy
,
D.
, and
Chakraverty
,
S.
,
2023
, “
Vibration Analysis of Single-Link Flexible Manipulator in an Uncertain Environment
,”
J. Vib. Eng. Technol.
,
12
(
2
), pp.
2677
2694
.10.1007/s42417-023-01007-2
30.
Rao
,
P.
,
Chakraverty
,
S.
, and
Roy
,
D.
,
2023
, “
Dynamics of Slender Single-Link Flexible Robotic Manipulator Based on Timoshenko Beam Theory
,”
Mathematical Methods in Dynamical Systems
,
CRC Press
,
Boca Raton, FL
, pp.
273
290
.
31.
Sahoo
,
M.
, and
Chakraverty
,
S.
,
2022
, “
Sawi Transform Based Homotopy Perturbation Method for Solving Shallow Water Wave Equations in Fuzzy Environment
,”
Mathematics
,
10
(
16
), p.
2900
.10.3390/math10162900
32.
Puri
,
M. L.
, and
Ralescu
,
D. A.
,
1983
, “
Differentials of Fuzzy Functions
,”
J. Math. Anal. Appl.
,
91
(
2
), pp.
552
558
.10.1016/0022-247X(83)90169-5
33.
Bede
,
B.
, and
Gal
,
S. G.
,
2004
, “
Almost Periodic Fuzzy-Number-Valued Functions
,”
Fuzzy Sets Syst.
,
147
(
3
), pp.
385
403
.10.1016/j.fss.2003.08.004
34.
Bede
,
B.
, and
Stefanini
,
L.
,
2013
, “
Generalized Differentiability of Fuzzy-Valued Functions
,”
Fuzzy Sets Syst.
,
230
, pp.
119
141
.10.1016/j.fss.2012.10.003
35.
Dong
,
N. P.
,
Long
,
H. V.
, and
Khastan
,
A.
,
2020
, “
Optimal Control of a Fractional Order Model for Granular SEIR Epidemic With Uncertainty
,”
Commun. Nonlinear Sci. Numer. Simul.
,
88
, p.
105312
.10.1016/j.cnsns.2020.105312
36.
Ur Rahman
,
M.
,
Arfan
,
M.
,
Shah
,
K.
, and
Gómez-Aguilar
,
J.
,
2020
, “
Investigating a Nonlinear Dynamical Model of Covid-19 Disease Under Fuzzy Caputo, Random and Abc Fractional Order Derivative
,”
Chaos, Solitons Fractals
,
140
, p.
110232
.10.1016/j.chaos.2020.110232
37.
Chakraverty
,
S.
,
Tapaswini
,
S.
, and
Behera
,
D.
,
2016
,
Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications
,
Wiley
,
Hoboken, NJ
.
38.
Wu
,
Y.
,
Ahmad
,
S.
,
Ullah
,
A.
, and
Shah
,
K.
,
2022
, “
Study of the Fractional-Order HIV-1 Infection Model With Uncertainty in Initial Data
,”
Math. Probl. Eng.
,
2022
, pp.
1
16
.10.1155/2022/7286460
39.
Sil
,
N.
,
Mahata
,
A.
, and
Roy
,
B.
,
2023
, “
Dynamical Behavior of HIV Infection in Fuzzy Environment
,”
Results Control Optim.
,
10
, p.
100209
.10.1016/j.rico.2023.100209
40.
Jafelice
,
R. M.
,
de Barros
,
L. C.
,
Bassanezi
,
R. C.
, and
Gomide
,
F.
,
2004
, “
Fuzzy Modeling in Symptomatic HIV Virus Infected Population
,”
Bull. Math. Biol.
,
66
(
6
), pp.
1597
1620
.10.1016/j.bulm.2004.03.002
41.
Wasques
,
V.
,
Laiate
,
B.
,
Santo Pedro
,
F.
,
Esmi
,
E.
, and
de Barros
,
L. C.
,
2020
, “
Interactive Fuzzy Fractional Differential Equation: Application on HIV Dynamics
,”
18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020
,
Springer, Lisbon, Portugal
,
June 15–19,
Part III 18, pp.
198
211
.10.1007/978-3-030-50153-2_15
42.
Chen
,
S.-B.
,
Rajaee
,
F.
,
Yousefpour
,
A.
,
Alcaraz
,
R.
,
Chu
,
Y.-M.
,
Gómez-Aguilar
,
J.
,
Bekiros
,
S.
,
Aly
,
A. A.
, and
Jahanshahi
,
H.
,
2021
, “
Antiretroviral Therapy of HIV Infection Using a Novel Optimal Type-2 Fuzzy Control Strategy
,”
Alexandria Eng. J.
,
60
(
1
), pp.
1545
1555
.10.1016/j.aej.2020.11.009
43.
Dayan
,
F.
,
Ahmed
,
N.
,
Bariq
,
A.
,
Akgül
,
A.
,
Jawaz
,
M.
,
Rafiq
,
M.
, and
Raza
,
A.
,
2023
, “
Computational Study of a co-Infection Model of HIV/AIDS and Hepatitis c Virus Models
,”
Sci. Rep.
,
13
(
1
), p.
21938
.10.1038/s41598-023-48085-6
44.
Mazandarani
,
M.
, and
Najariyan
,
M.
,
2014
, “
Differentiability of Type-2 Fuzzy Number-Valued Functions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
3
), pp.
710
725
.10.1016/j.cnsns.2013.07.002
45.
Mohapatra
,
D.
, and
Chakraverty
,
S.
,
2023
, “
Initial Value Problems in Type-2 Fuzzy Environment
,”
Math. Comput. Simul.
,
204
, pp.
230
242
.10.1016/j.matcom.2022.08.002
46.
Mazandarani
,
M.
, and
Najariyan
,
M.
,
2014
, “
Type-2 Fuzzy Fractional Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
7
), pp.
2354
2372
.10.1016/j.cnsns.2013.11.003
47.
Mohapatra
,
D.
, and
Chakraverty
,
S.
,
2023
, “
Legendre Wavelets Based Approach for the Solution of Type-2 Fuzzy Uncertain Smoking Model of Fractional Order
,”
Eng. Comput.
,
40
(
4
), pp.
868
920
.10.1108/EC-08-2022-0540
48.
Mohapatra
,
D.
, and
Chakraverty
,
S.
,
2024
, “
Legendre Wavelet Method Based Solution of Fractional Order Prey-Predator Model in Type-2 Fuzzy Environment
,”
Appl. Soft Comput.
,
154
, p.
111370
.10.1016/j.asoc.2024.111370
49.
Wang
,
T.
,
Zhao
,
P.
, and
Song
,
A.
,
2022
, “
Power Option Pricing Based on Time-Fractional Model and Triangular Interval Type-2 Fuzzy Numbers
,”
Complexity
,
2022
, pp.
1
10
.
50.
da Motta Jafelice
,
R. S.
, and
Bertone
,
A. M. A.
,
2021
,
Biological Models Via Interval Type-2 Fuzzy Sets
,
Springer
,
Berlin, Germany
.
51.
Mazandarani
,
M.
,
Pariz
,
N.
, and
Kamyad
,
A. V.
,
2018
, “
Granular Differentiability of Fuzzy-Number-Valued Functions
,”
IEEE Trans. Fuzzy Syst.
,
26
(
1
), pp.
310
323
.10.1109/TFUZZ.2017.2659731
52.
Piegat
,
A.
, and
Landowski
,
M.
,
2015
, “
Horizontal Membership Function and Examples of Its Applications
,”
Int. J. Fuzzy Syst.
,
17
(
1
), pp.
22
30
.10.1007/s40815-015-0013-8
53.
Son
,
N. T. K.
,
Long
,
H. V.
, and
Dong
,
N. P.
,
2019
, “
Fuzzy Delay Differential Equations Under Granular Differentiability With Applications
,”
Comput. Appl. Math.
,
38
(
3
), p.
107
.10.1007/s40314-019-0881-x
54.
Najariyan
,
M.
,
Pariz
,
N.
, and
Vu
,
H.
,
2022
, “
Fuzzy Linear Singular Differential Equations Under Granular Differentiability Concept
,”
Fuzzy Sets Syst.
,
429
, pp.
169
187
.10.1016/j.fss.2021.01.003
55.
Zhang
,
J.
,
Wang
,
Y.
, and
Zhang
,
S.
,
2022
, “
A New Homotopy Transformation Method for Solving the Fuzzy Fractional Black–Scholes European Option Pricing Equations Under the Concept of Granular Differentiability
,”
Fractal Fractional
,
6
(
6
), p.
286
.10.3390/fractalfract6060286
56.
Najariyan
,
M.
, and
Qiu
,
L.
,
2022
, “
Interval Type-2 Fuzzy Differential Equations and Stability
,”
IEEE Trans. Fuzzy Syst.
,
30
(
8
), pp.
2915
2929
.10.1109/TFUZZ.2021.3097810
57.
Najariyan
,
M.
, and
Zhao
,
Y.
,
2018
, “
Fuzzy Fractional Quadratic Regulator Problem Under Granular Fuzzy Fractional Derivatives
,”
IEEE Trans. Fuzzy Syst.
,
26
(
4
), pp.
2273
2288
.10.1109/TFUZZ.2017.2783895
58.
Narayanamoorthy
,
S.
,
Baleanu
,
D.
,
Thangapandi
,
K.
, and
Perera
,
S. S. N.
,
2019
, “
Analysis for Fractional-Order Predator–Prey Model With Uncertainty
,”
IET Syst. Biol.
,
13
(
6
), pp.
277
289
.10.1049/iet-syb.2019.0055
You do not currently have access to this content.