Abstract

This work investigates how viscoelasticity affects the dynamic behavior of a lumped-parameter model of a bistable von Mises truss. The system is controlled by a linear first-order equation and a second-order nonlinear Duffing equation with a quadratic nonlinearity that governs mechanical behavior. The second-order equation controls mechanical oscillations, while the linear first-order equation controls viscoelastic force evolution. Combined, the two equations form a third-order jerk equation that controls system dynamics. Viscoelasticity adds time scales and degrees-of-freedom to material behavior, distinguishing it from viscosity-only systems. Due to harmonic excitation, the system exhibits varied dynamic responses, from periodic to quasi-periodic to chaotic. We explore the dynamics of a harmonically forced von Mises truss with viscous damping to address this purpose. We demonstrate this system's rich dynamic behavior due to driving amplitude changes. This helps explain viscoelastic system behavior. A viscoelastic unit replaces the viscous damper, and we show that, although viscous damping merely changes how fast the trajectory decays to an attractor, viscoelasticity modifies both the energy landscape and the rate of decay. In a conventional linear solid model, three viscoelastic parameters control the system's behavior instead of one, as in pure viscous damping. This adds degrees-of-freedom that affect system dynamics. We present the parameter space for chaotic behavior and the shift from regular to irregular motion. Finally, Melnikov's criteria identify the regular-chaotic threshold. The system's viscous and elastic components affect the chaotic threshold amplitude

References

1.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2019
, “
Dynamics of Viscoelastic Snap-Through
,”
J. Mech. Phys. Solids
,
124
, pp.
781
813
.10.1016/j.jmps.2018.11.020
2.
Ghoshal
,
P.
,
Gibert
,
J.
, and
Bajaj
,
A. K.
,
2024
, “
Effect of Boundary Conditions on the Stability of a Viscoelastic Von Mises Truss
,”
Advances in Nonlinear Dynamics: Proceedings of the Third International Nonlinear Dynamics Conference (NODYCON 2023)
, Vol.
1
,
Springer
,
Cham, Switzerland
.
3.
Orlando
,
D.
,
de Castro
,
C. H. L.
, and
Gonçalves
,
P. B.
,
2018
, “
Nonlinear Vibrations and Instability of a Bistable Shallow Reticulated Truss
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1479
1499
.10.1007/s11071-018-4437-1
4.
Virgin
,
L.
,
2023
, “
On the Elastic Snapping of Structural Elements
,”
Int. J. Non-Linear Mech.
,
149
, p.
104329
.10.1016/j.ijnonlinmec.2022.104329
5.
Wang
,
K.-W.
, and
Harne
,
R. L.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
Wiley
,
Chichester, UK
.
6.
Suire
,
G.
, and
Cederbaum
,
G.
,
1994
, “
Elastica Type Dynamic Stability Analysis of Viscoelastic Columns
,”
Arch. Appl. Mech.
,
64
(
5
), pp.
307
316
.10.1007/BF00788216
7.
Suire
,
G.
, and
Cederbaum
,
G.
,
1995
, “
Periodic and Chaotic Behavior of Viscoelastic Nonlinear (Elastica) Bars Under Harmonic Excitations
,”
Int. J. Mech. Sci.
,
37
(
7
), pp.
753
772
.10.1016/0020-7403(95)00006-J
8.
Pourtakdoust
,
S.
, and
Fazelzadeh
,
S.
,
2003
, “
Chaotic Analysis of Nonlinear Viscoelastic Panel Flutter in Supersonic Flow
,”
Nonlinear Dyn.
,
32
(
4
), pp.
387
404
.10.1023/A:1025616916033
9.
Fang
,
H.
,
Liu
,
Z.
, and
Duan
,
L.
,
2022
, “
Enhanced Dissipation in a Double-Beam System With a Bistable Constraint
,”
Arch. Appl. Mech.
,
92
(
3
), pp.
885
901
.10.1007/s00419-021-02079-w
10.
Lenci
,
S.
, and
Rega
,
G.
,
2004
, “
Global Optimal Control and System-Dependent Solutions in the Hardening Helmholtz–Duffing Oscillator
,”
Chaos, Solitons Fractals
,
21
(
5
), pp.
1031
1046
.10.1016/S0960-0779(03)00387-4
11.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.10.1016/j.physd.2010.01.019
12.
Stanton
,
S. C.
,
Owens
,
B. A.
, and
Mann
,
B. P.
,
2012
, “
Harmonic Balance Analysis of the Bistable Piezoelectric Inertial Generator
,”
J. Sound Vib.
,
331
(
15
), pp.
3617
3627
.10.1016/j.jsv.2012.03.012
13.
Zhou
,
S.
, and
Zuo
,
L.
,
2018
, “
Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting
,”
Commun. Nonlinear Sci. Numer. Simul.
,
61
, pp.
271
284
.10.1016/j.cnsns.2018.02.017
14.
Virgin
,
L. N.
,
Plaut
,
R. H.
, and
Cheng
,
C.-C.
,
1992
, “
Prediction of Escape From a Potential Well Under Harmonic Excitation
,”
Int. J. Non-Linear Mech.
,
27
(
3
), pp.
357
365
.10.1016/0020-7462(92)90005-R
15.
Orlando
,
D.
,
Goncalves
,
P. B.
,
Lenci
,
S.
, and
Rega
,
G.
,
2017
, “
Influence of the Mechanics of Escape on the Instability of Von Mises Truss and Its Control
,”
Procedia Eng.
,
199
, pp.
778
783
.10.1016/j.proeng.2017.09.048
16.
Alhadidi
,
A. H.
, and
Gibert
,
J. M.
,
2021
, “
A New Perspective on Static Bifurcations in the Presence of Viscoelasticity
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1345
1363
.10.1007/s11071-020-06104-5
17.
Moon
,
F. C.
,
2008
,
Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers
,
Wiley
,
New York
.
18.
Ruzziconi
,
L.
,
Litak
,
G.
, and
Lenci
,
S.
,
2011
, “
Nonlinear Oscillations, Transition to Chaos and Escape in the Duffing System With Non-Classical Damping
,”
J. Vibroengineering
,
13
, pp.
22
38
.https://core.ac.uk/download/pdf/323313015.pdf
19.
Wiggins
,
S.
,
2003
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
, Vol.
2
,
Springer
,
New York
.
20.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science and Business Media
,
New York
.
21.
Holmes
,
P.
, and
Marsden
,
J.
,
1981
, “
A Partial Differential Equation With Infinitely Many Periodic Orbits: Chaotic Oscillations of a Forced Beam
,”
Arch. Ration. Mech. Anal.
,
76
(
2
), pp.
135
165
.10.1007/BF00251249
22.
Holmes
,
P. J.
, and
Marsden
,
J. E.
,
1982
, “
Horseshoes in Perturbations of Hamiltonian Systems With Two Degrees of Freedom
,”
Commun. Math. Phys.
,
82
(
4
), pp.
523
544
.10.1007/BF01961239
You do not currently have access to this content.