Abstract

This paper explores the influence of interstage torsional damping on the nonlinear dynamics of a two-stage planetary gear transmission system. A comprehensive nonlinear dynamic model is developed, incorporating interstage torsional damping, stiffness, time-varying meshing parameters, damping, and tooth side clearance. The nonlinear equations are derived and solved using the fourth-order Runge–Kutta method. The investigation reveals that the changes in torsional damping between stages significantly affect the nonlinear dynamic characteristics of the system, especially under load fluctuations. Bifurcation characteristics are analyzed using phase diagrams, Poincaré diagrams, time history diagrams, and frequency–domain spectrograms. The simulation results demonstrate that heightened torsional damping between stages distinctly affects the motion states across excitation frequencies. Notably, it mitigates the unstable motion state caused by high-frequency excitation when tooth side clearance is minimal.

References

1.
Neufond
,
J.
,
Denimal
,
E.
,
Rigaud
,
E.
,
Perret-Liaudet
,
J.
, and
Carbonelli
,
A.
,
2019
, “
Whining Noise Computation of a Planetary Gear Set Induced by the Multi-Mesh Excitations
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
21–22
), pp.
7236
7245
.10.1177/0954406219853313
2.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Period-One Motions
,”
J. Sound Vib.
,
284
(
1–2
), pp.
151
172
.10.1016/j.jsv.2004.06.010
3.
Xu
,
X.
, and
Zhou
,
P. R.
,
2010
, “
Research on Torsional Vibration of Gear-Shafting System Based on an Extended Lumped Parameter Model
,”
Adv. Mater. Res.
,
143–144
(
2011
), pp.
487
492
.10.4028/www.scientific.net/AMR.143-144.487
4.
Wei
,
J.
,
Zhang
,
A.
,
Qin
,
D.
,
Lim
,
T. C.
,
Shu
,
R.
,
Lin
,
X.
, and
Meng
,
F.
,
2017
, “
A Coupling Dynamics Analysis Method for a Multistage Planetary Gear System
,”
Mech. Mach. Theory
,
110
, pp.
27
49
.10.1016/j.mechmachtheory.2016.12.007
5.
Liu
,
C.
,
Qin
,
D.
,
Lim
,
T. C.
, and
Liao
,
Y. H.
,
2014
, “
Dynamic Characteristics of the Herringbone Planetary Gear Set During the Variable Speed Process
,”
J. Sound Vib.
,
333
(
24
), pp.
6498
6515
.10.1016/j.jsv.2014.07.024
6.
Jiang
,
Y.
,
Zhu
,
H.
,
Li
,
Z.
, and
Peng
,
Z.
,
2016
, “
The Nonlinear Dynamics Response of Cracked Gear System in a Coal Cutter Taking Environmental Multi-Frequency Excitation Forces Into Consideration
,”
Nonlinear Dyn.
,
84
(
1
), pp.
203
222
.10.1007/s11071-015-2409-2
7.
Marafona
,
J. D. M.
,
Marques
,
P. M. T.
,
Martins
,
R. C.
, and
Seabra
,
J. H. O.
,
2021
, “
Mesh Stiffness Models for Cylindrical Gears: A Detailed Review
,”
Mech. Mach. Theory
,
166
, p.
104472
.10.1016/j.mechmachtheory.2021.104472
8.
Natali
,
C.
,
Battarra
,
M.
,
Dalpiaz
,
G.
, and
Mucchi
,
E.
,
2021
, “
A Critical Review on FE-Based Methods for Mesh Stiffness Estimation in Spur Gears
,”
Mech. Mach. Theory
,
161
, p.
104319
.10.1016/j.mechmachtheory.2021.104319
9.
Liang
,
X.
,
Zuo
,
M. J.
, and
Patel
,
T. H.
,
2014
, “
Evaluating the Time-Varying Mesh Stiffness of a Planetary Gear Set Using the Potential Energy Method
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
3
), pp.
535
547
.10.1177/0954406213486734
10.
Dai
,
H.
,
Long
,
X.
,
Chen
,
F.
, and
Xun
,
C.
,
2021
, “
An Improved Analytical Modelfor Gear Mesh Stiffness Calculation
,”
Mech. Mach. Theory
,
159
, p.
104262
.10.1016/j.mechmachtheory.2021.104262
11.
Liang
,
X.
,
Zhang
,
H.
,
Zuo
,
M. J.
, and
Qin
,
Y.
,
2018
, “
Three New Models for Evaluation of Standard Involute Spur Gear Mesh Stiffness
,”
Mech. Syst. Signal Process.
,
101
, pp.
424
434
.10.1016/j.ymssp.2017.09.005
12.
Yi
,
Y.
,
Huang
,
K.
,
Yang
,
S. X.
, and
Sang
,
M.
,
2019
, “
Nonlinear Dynamic Modelling and Analysis for a Spur Gear System With Time-Varying Pressure Angle and Gear Backlash
,”
Mech. Syst. Signal Process.
,
132
, pp.
18
34
.10.1016/j.ymssp.2019.06.013
13.
Shi
,
J. F.
,
Gou
,
X. F.
, and
Zhu
,
L. Y.
,
2019
, “
Modeling and Analysis of a Spur Gear Pair Considering Multi-State Mesh With Time-Varying Parameters and Backlash
,”
Mech. Mach. Theory
,
134
, pp.
582
603
.10.1016/j.mechmachtheory.2019.01.018
14.
Yu
,
W.
,
Mechefske
,
C. K.
, and
Timusk
,
M.
,
2017
, “
The Dynamic Coupling Behaviour of a Cylindrical Geared Rotor System Subjected to Gear Eccentricities
,”
Mech. Mach. Theory
,
107
, pp.
105
122
.10.1016/j.mechmachtheory.2016.09.017
15.
Wang
,
G. J.
,
Chen
,
L.
,
Li
,
Y.
, and
Zou
,
S. D.
,
2017
, “
Research on the Dynamic Transmission Error of a Spur Gear Pair With Eccentricities by Finite Element Method
,”
Mech. Mach. Theory
,
109
, pp.
1
13
.10.1016/j.mechmachtheory.2016.11.006
16.
Omar
,
F. K.
,
Moustafa
,
K. A.
, and
Emam
,
S.
,
2012
, “
Mathematical Modeling of Gearbox Including Defects With Experimental Verification
,”
J. Vib. Control
,
18
(
9
), pp.
1310
1321
.10.1177/1077546311403791
17.
Liu
,
P.
,
Zhu
,
L.
,
Gou
,
X.
,
Shi
,
J.
, and
Jin
,
G.
,
2021
, “
Dynamics Modeling and Analyzing of Spur Gear Pair With Pitch Deviation Considering Time-Varying Contact Ratio Under Multi-State Meshing
,”
J. Sound Vib.
,
513
, p.
116411
.10.1016/j.jsv.2021.116411
18.
Ren
,
F.
,
Li
,
A.
,
Shi
,
G.
,
Wu
,
L.
, and
Wang
,
N.
,
2020
, “
The Effects of the Planet–Gear Manufacturing Eccentric Errors on the Dynamic Properties for Herringbone Planetary Gears
,”
Appl. Sci.
,
10
(
3
), p.
1060
.10.3390/app10031060
19.
Shi
,
J. F.
,
Gou
,
X. F.
, and
Zhu
,
L. Y.
,
2020
, “
Calculation of Time-Varying Backlash for an Involute Spur Gear Pair
,”
Mech. Mach. Theory
,
152
, p.
103956
.10.1016/j.mechmachtheory.2020.103956
20.
Chen
,
Z.
,
Zhou
,
Z.
,
Zhai
,
W.
, and
Wang
,
K. Y.
,
2020
, “
Improved Analytical Calculation Model of Spur Gear Mesh Excitations With Tooth Profile Deviations
,”
Mech. Mach. Theory
,
149
, p.
103838
.10.1016/j.mechmachtheory.2020.103838
21.
Bahk
,
C.-J.
, and
Parker
,
R. G.
,
2011
, “
Analytical Solution for the Nonlinear Dynamics of Planetary Gears
,”
ASME J. Comput. Nonlinear Dynam.
, 6(2), p. 021007.10.1115/1.4002392
22.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.10.1016/j.jsv.2006.11.028
23.
Masoumi
,
A.
,
Francesco
,
P.
,
Samani
,
F. S.
, and
Marco
,
B.
,
2015
, “
Symmetry Breaking and Chaos-Induced Imbalance in Planetary Gears
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
561
582
.10.1007/s11071-014-1890-3
24.
Inalpolat
,
M.
, and
Ahmet
,
K.
,
2010
, “
A Dynamic Model to Predict Modulation Sidebands of a Planetary Gear Set Having Manufacturing Errors
,”
J. Sound Vib.
,
329
(
4
), pp.
371
393
.10.1016/j.jsv.2009.09.022
25.
Li
,
S.
,
Wu
,
Q. M.
, and
Zhang
,
Z. Q.
,
2014
, “
Bifurcation and Chaos Analysis of Multistage Planetary Gear Train
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
217
233
.10.1007/s11071-013-1060-z
26.
Hu
,
A. J.
,
Liu
,
S.
,
Xiang
,
L.
, and
Zhang
,
Y.
,
2022
, “
Dynamic Modeling and Analysis of Multistage Planetary Gear System Considering Tooth Crack Fault
,”
Eng. Failure Anal.
,
137
, p.
106408
.10.1016/j.engfailanal.2022.106408
You do not currently have access to this content.