Abstract

Delay differential equations (DDEs) appear in many applications, and determining their stability is a challenging task that has received considerable attention. Numerous methods for stability determination of a given DDE exist in the literature. However, in practical scenarios it may be beneficial to be able to determine the stability of a delayed system based solely on its response to given inputs, without the need to consider the underlying governing DDE. In this work, we propose such a data-driven method, assuming only three things about the underlying DDE: (i) it is linear, (ii) its coefficients are either constant or time-periodic with a known fundamental period, and (iii) the largest delay is known. Our approach involves giving the first few functions of an orthonormal polynomial basis as input, and measuring/computing the corresponding responses to generate a state transition matrix M, whose largest eigenvalue determines the stability. We demonstrate the correctness, efficacy and convergence of our method by studying four candidate DDEs with differing features. We show that our approach is robust to noise, thereby establishing its suitability for practical applications, wherein measurement errors are unavoidable.

References

1.
Kyrychko
,
Y. N.
, and
Hogan
,
S. J.
,
2010
, “
On the Use of Delay Equations in Engineering Applications
,”
J. Vib. Control
,
16
(
7–8
), pp.
943
960
.10.1177/1077546309341100
2.
Sipahi
,
R.
,
Niculescu
,
S.-I.
,
Abdallah
,
C. T.
,
Michiels
,
W.
, and
Gu
,
K.
,
2011
, “
Stability and Stabilization of Systems With Time Delay
,”
IEEE Control Syst. Mag.
,
31
(
1
), pp.
38
65
.10.1109/MCS.2010.939135
3.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021011
.10.1115/1.4026989
4.
Ur Rehman
,
M. A.
,
Kazim
,
M.
,
Ahmed
,
N.
,
Raza
,
A.
,
Rafiq
,
M.
,
Akgül
,
A.
,
Inc
,
M.
,
Park
,
C.
, and
Zakarya
,
M.
,
2023
, “
Positivity Preserving Numerical Method for Epidemic Model of Hepatitis b Disease Dynamic With Delay Factor
,”
Alexandria Eng. J.
,
64
, pp.
505
515
.10.1016/j.aej.2022.09.013
5.
Li
,
P.
,
Gao
,
R.
,
Xu
,
C.
,
Ahmad
,
S.
,
Li
,
Y.
, and
Akgül
,
A.
,
2023
, “
Bifurcation Behavior and Pdγ Control Mechanism of a Fractional Delayed Genetic Regulatory Model
,”
Chaos, Solitons Fractals
,
168
, p.
113219
.10.1016/j.chaos.2023.113219
6.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Asymptotics for the Characteristic Roots of Delayed Dynamic Systems
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
475
483
.10.1115/1.1875492
7.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
215
223
.10.1115/1.1568121
8.
Kalmár-Nagy
,
T.
,
2009
, “
Stability Analysis of Delay-Differential Equations by the Method of Steps and Inverse Laplace Transform
,”
Differ. Equations Dyn. Syst.
,
17
(
1–2
), pp.
185
200
.10.1007/s12591-009-0014-x
9.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
10.
Fridman
,
E.
,
2001
, “
New Lyapunov–Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
,
43
(
4
), pp.
309
319
.10.1016/S0167-6911(01)00114-1
11.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi–Discretization for Time–Delay Systems: Stability and Engineering Applications
, Vol.
178
,
Springer Science & Business Media
,
New York
.
12.
Vyasarayani
,
C. P.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.10.1007/s40435-014-0060-2
13.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
14.
Sun
,
J. Q.
, and
Song
,
B.
,
2009
, “
Control Studies of Time–Delayed Dynamical Systems With the Method of Continuous Time Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3933
3944
.10.1016/j.cnsns.2009.02.011
15.
Pekar
,
L.
, and
Gao
,
Q.
,
2018
, “
Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results
,”
IEEE Access
,
6
, pp.
35457
35491
.10.1109/ACCESS.2018.2851453
16.
Pekař
,
L.
,
Prokop
,
R.
, and
Matuš
,
R.
,
2011
, “
A Stability Test for Control Systems With Delays Based on the Nyquist Criterion
,”
Int. J. Math. Models Methods Appl. Sci.
,
5
(
7
), pp.
1213
1224
.https://www.naun.org/main/NAUN/ijmmas/17-128.pdf
17.
Oaxaca-Adams
,
G.
,
Villafuerte-Segura
,
R.
, and
Aguirre-Hernández
,
B.
,
2021
, “
On Non-Fragility of Controllers for Time Delay Systems: A Numerical Approach
,”
J. Franklin Inst.
,
358
(
9
), pp.
4671
4686
.10.1016/j.jfranklin.2021.03.030
18.
Oaxaca-Adams
,
G.
, and
Villafuerte-Segura
,
R.
,
2023
, “
On Controllers Performance for a Class of Time-Delay Systems: Maximum Decay Rate
,”
Automatica
,
147
, p.
110669
.10.1016/j.automatica.2022.110669
19.
Vyhlidal
,
T.
, and
Zitek
,
P.
,
2009
, “
Modification of Mikhaylov Criterion for Neutral Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2430
2435
.10.1109/TAC.2009.2029301
20.
Ramirez
,
A.
,
Breda
,
D.
, and
Sipahi
,
R.
,
2021
, “
A Scalable Approach to Compute Delay Margin of a Class of Neutral-Type Time Delay Systems
,”
SIAM J. Control Optim.
,
59
(
2
), pp.
805
824
.10.1137/19M1307408
21.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
Weinheim, Germany
.
22.
Bellman
,
R.
, and
Cooke
,
K. L.
,
1963
, Differential-Difference Equations, Academic Press, New York.
23.
Shaik
,
J.
,
Tiwari
,
S.
, and
Vyasarayani
,
C. P.
,
2023
, “
Floquet Theory for Linear Time–Periodic Delay Differential Equations Using Orthonormal History Functions
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
9
), p.
091005
.10.1115/1.4062633
24.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
,
2013
,
Introduction to Functional Differential Equations
, Vol.
99
,
Springer Science & Business Media
, New York.
25.
Torkamani
,
S.
,
Butcher
,
E. A.
, and
Khasawneh
,
F. A.
,
2013
, “
Parameter Identification in Periodic Delay Differential Equations With Distributed Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
4
), pp.
1016
1026
.10.1016/j.cnsns.2012.09.001
26.
Sadath
,
A.
, and
Vyasarayani
,
C.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061024
.10.1115/1.4030153
27.
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2011
, “
Stability of Delay Integro-Differential Equations Using a Spectral Element Method
,”
Math. Comput. Modell.
,
54
(
9–10
), pp.
2493
2503
.10.1016/j.mcm.2011.06.009
You do not currently have access to this content.