Abstract

In this paper, we present a Riemannian geometric derivation of the governing equations of motion of nonholonomic dynamic systems. A geometric form of the work-energy principle is first derived. The geometric form can be realized in appropriate generalized quantities, and the independent equations of motion can be obtained if the subspace of generalized speeds allowable by nonholonomic constraints can be determined. We provide a geometric perspective of the governing equations of motion and demonstrate its effectiveness in studying dynamic systems subjected to nonholonomic constraints.

References

1.
Desloge
,
E. A.
,
1986
, “
A Comparison of Kane's Equations of Motion and the Gibbs-Appell Equations of Motion
,”
Am. J. Phys.
,
54
(
5
), pp.
470
472
.10.1119/1.14566
2.
Gibbs
,
J. W.
,
1879
, “
On the Fundamental Formulas of Dynamics
,”
Am. J. Math.
,
2
(
1
), pp.
49
64
.10.2307/2369196
3.
Hamel
,
P. G.
,
1949
,
Theoretiche Mechanik
,
Springer-Verlag
,
Berlin, Germany
.
4.
Honein
,
T. E.
, and
O'Reilly
,
O. M.
,
2021
, “
The Geometry of Equations of Motion: Particles in Equivalent Universes
,”
Nonlinear Dyn.
,
104
(
4
), pp.
2979
2994
.10.1007/s11071-021-06565-2
5.
Huston
,
R. L.
,
1987
, “
On the Equivalence of Kane's Equations and Gibbs' Equations for Multibody Dynamics Formulation
,”
Mech. Res. Commun.
,
14
(
2
), pp.
123
131
.10.1016/0093-6413(87)90029-2
6.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
,
Stoneham, MA
.
7.
Huston
,
R. L.
,
1991
, “
Multibody Dynamics – Modeling and Analysis Methods
,”
ASME Appl. Mech. Rev.
,
44
(
3
), pp.
109
117
.10.1115/1.3119496
8.
Huston
,
R. L.
,
1999
, “
Constraint Forces and Undetermined Multipliers in Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
3
(
4
), pp.
381
389
.10.1023/A:1009868500311
9.
Huston
,
R. L.
,
Passerello
,
C. E.
, and
Harlow
,
M. W.
,
1978
, “
Dynamics of Multi Rigid-Body Systems
,”
ASME J. Appl. Mech.
,
45
(
4
), pp.
889
894
.10.1115/1.3424437
10.
Huston
,
R. L.
, and
Passerello
,
C. E.
,
1980
, “
Multibody Structural Dynamics Including Translation Between the Bodies
,”
Comput. Struct.
,
12
(
5
), pp.
713
720
.10.1016/0045-7949(80)90173-X
11.
Kane
,
T. R.
,
1961
, “
Dynamics of Nonholonomic Systems
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
574
578
.10.1115/1.3641786
12.
Kane
,
T. R.
,
1983
, “
Formulation of Dynamical Equations of Motion
,”
Am. J. Phys.
,
51
(
11
), pp.
974
977
.10.1119/1.13452
13.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1980
, “
Formulation of Equations of Motion for Complex Spacecraft
,”
J. Guid. Control
,
3
(
2
), pp.
99
112
.10.2514/3.55956
14.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York, NY
.
15.
Likins
,
P. W.
,
1975
, “
Quasicoordinate Equations for Flexible Spacecraft
,”
AIAA J.
,
13
(
4
), pp.
524
526
.10.2514/3.49745
16.
Liu
,
C. Q.
, and
Huston
,
R. L.
,
2008
, “
Another Form of Equations of Motion for Constrained Multibody Systems
,”
Nonlinear Dyn.
,
51
(
3
), pp.
465
475
.10.1007/s11071-007-9225-2
17.
Liu
,
X.
,
2008
, “
A Lie Group Formulation of Kane's Equations for Multibody Systems
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
29
49
.10.1007/s11044-008-9104-8
18.
Liu
,
X.
,
2011
, “
On the Governing Equations of Motion of Nonholonomic Systems on Riemannian Manifolds
,”
J. Math. Sci.
,
177
(
3
), pp.
411
418
.10.1007/s10958-011-0467-7
19.
Liu
,
X.
,
Huston
,
R. L.
, and
Liu
,
C. Q.
,
2011
, “
The D'Alembert–Lagrange Equation Exploited on a Riemannian Manifold
,”
Multibody Syst. Dyn.
,
25
(
4
), pp.
411
427
.10.1007/s11044-010-9231-x
20.
Mitiguy
,
P. C.
, and
Kane
,
T. R.
,
1996
, “
Motion Variables Leading to Efficient Equations of Motion
,”
Int. J. Rob. Res.
,
15
(
5
), pp.
522
532
.10.1177/027836499601500507
21.
Niemark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
,
American Mathematical Society
,
Providence, RI
.
22.
Papastavridis
,
J. G.
,
1998
, “
A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics
,”
ASME Appl. Mech. Rev.
,
51
(
4
), pp.
239
265
.10.1115/1.3099003
23.
Parsa
,
K.
,
2007
, “
The Lagrangian Derivation of Kane's Equations
,”
Trans. Can. Soc. Mech. Eng.
,
31
(
4
), pp.
407
420
.10.1139/tcsme-2007-0029
24.
Passerello
,
C. P.
, and
Huston
,
R. L.
,
1973
, “
Another Look at Nonholonomic Systems
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
101
104
.10.1115/1.3422905
25.
Quinn
,
R. D.
,
1990
, “
Equations of Motion for Structures in Terms of Quasi-Coordinates
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
745
749
.10.1115/1.2897086
26.
Roithmayr
,
C. M.
, and
Hodges
,
D. H.
,
2016
,
Dynamics: Theory and Application of Kane's Method
,
Cambridge University Press
,
New York
.
27.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041002
.10.1115/1.4026569
28.
Storch
,
J.
, and
Gates
,
S.
,
1989
, “
Motivating Kane's Method for Obtaining Equations of Motion for Dynamic Systems
,”
J. Guid. Control, Dyn.
,
12
(
4
), pp.
593
595
.10.2514/3.20448
29.
Townsend
,
M. A.
,
1992
, “
Kane's Equations, Lagrange's Equations, and Virtual Work
,”
J. Guid. Control, Dyn.
,
15
(
1
), pp.
277
280
.10.2514/3.20832
30.
Whittaker
,
E. T.
,
1947
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
Cambridge University Press
,
New York
.
31.
Chern
,
S. S.
,
Chen
,
W. H.
, and
Lam
,
K. S.
,
1999
,
Lectures on Differential Geometry
,
World Scientific
,
Singapore
.
You do not currently have access to this content.