Abstract

The traditional linear generation fuzzy fractional differential equation parameter identification algorithm lacks the update of the parameter identification process, has a large amount of calculation, slow convergence speed of parameter identification, and strong dependence on initial values. In this paper, a new intelligent recognition algorithm for linearly generated fuzzy fractional differential equations is proposed. The parameters of the equation are re-expressed by the constant level set. The piecewise constant level set algorithm based on equation parameter intelligent identification is used to solve the steady-state solution of fractional differential equation, and the nonconvergence problem caused by too much calculation is solved. A new algorithm scheme for linearly generating fuzzy fractional differential equations is established, the constraints of the level set of the differential equations are calculated, and the updated algorithm for parameter identification of the equation is obtained. The evolutionary algorithm is used to solve the updating algorithm to realize the intelligent identification algorithm of linear fractional fuzzy differential equations. Experimental results showed that the algorithm had the advantages of fast convergence speed, high calculation accuracy, and low initial value.

References

1.
Rashid
,
S.
,
Ashraf
,
R.
, and
Hammouch
,
Z.
,
2023
, “
New Generalized Fuzzy Transform Computations for Solving Fractional Partial Differential Equations Arising in Oceanography
,”
J. Ocean Eng. Sci.
,
8
(
1
), pp.
55
78
.10.1016/j.joes.2021.11.004
2.
Akram
,
M.
,
Ihsan
,
T.
, and
Allahviranloo
,
T.
,
2023
, “
Solving Pythagorean Fuzzy Fractional Differential Equations Using Laplace Transform
,”
Granul. Comput.
,
8
(
3
), pp.
551
575
.10.1007/s41066-022-00344-z
3.
Kumar
,
S.
,
2022
, “
Numerical Solution of Fuzzy Fractional Diffusion Equation by Chebyshev Spectral Method
,”
Numer. Meth. Part. Differ. Equ.
,
38
(
3
), pp.
490
508
.10.1002/num.22650
4.
Zhang
,
H.
,
2020
, “
Several Methods for Solving Exact Solutions of Nonlinear Fractional Partial Differential Equations
,”
J. Hubei Minzu Univ.
,
38
(
3
), pp.
313
317
.
5.
Khorram
,
E.
,
Ezzati
,
R.
, and
Valizadeh
,
Z.
,
2014
, “
Linear Fractional Multi-Objective Optimization Problems Subject to Fuzzy Relational Equations With a Continuous Archimedean Triangular Norm
,”
Inf. Sci.
,
267
(
3
), pp.
225
239
.10.1016/j.ins.2013.12.018
6.
Kavitha
,
K.
,
Vijayakumar
,
V.
,
Udhayakumar
,
R.
, and
Ravichandran
,
C.
,
2022
, “
Results on Controllability of Hilfer Fractional Differential Equations with Infinite Delay Via Measures of Noncompactness
,”
Asian J. Control
,
24
(
3
), pp.
1406
1415
.10.1002/asjc.2549
7.
Li
,
Z.
,
Liu
,
L.
,
Dehghan
,
S.
,
Chen
,
Y.
, and
Xue
,
D.
,
2017
, “
A Review and Evaluation of Numerical Tools for Fractional Calculus and Fractional Order Controls
,”
Int. J. Control
,
90
(
6
), pp.
1165
1181
.10.1080/00207179.2015.1124290
8.
Li
,
Y.
, and
Li
,
J.
,
2014
, “
Stability Analysis of Fractional Order Systems Based on T-S Fuzzy Model With the Fractional Order
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2909
2919
.10.1007/s11071-014-1635-3
9.
Chen
,
Y.
,
Li
,
K.
,
Chen
,
Z.
, and
Wang
,
J.
,
2017
, “
Restricted Gene Expression Programming: A New Approach for Parameter Identification Inverse Problems of Partial Differential Equation
,”
Soft Comput.
,
21
(
10
), pp.
2651
2663
.10.1007/s00500-015-1965-1
10.
Li
,
Y.
,
Wang
,
D.
,
Zhou
,
S.
, and
Wang
,
X.
,
2021
, “
Intelligent Parameter Identification for Robot Servo Controller Based on Improved Integration Method
,”
Sensors
,
21
(
12
), p.
4177
.10.3390/s21124177
11.
Zhou
,
W. X.
, and
Liu
,
H. Z.
,
2014
, “
Existence of Weak Solutions for Nonlinear Fractional Differential Inclusion With Non-Separated Boundary Conditions
,”
J. Appl. Math.
,
2012
(
1
), p.
530624
.10.1155/2012/530624
12.
Upmanyu
,
M.
, and
Saxena
,
R. R.
,
2015
, “
On Solving Multi Objective Set Covering Problem With Imprecise Linear Fractional Objectives
,”
RAIRO-Oper. Res.
,
49
(
3
), pp.
495
510
.10.1051/ro/2014045
13.
Stanojević
,
B.
, and
Stanojević
,
M.
,
2016
, “
Parametric Computation of a Fuzzy Set Solution to a Class of Fuzzy Linear Fractional Optimization Problems
,”
Fuzzy Optim. Decis. Making
,
15
(
4
), pp.
435
455
.10.1007/s10700-016-9232-1
14.
Zhang
,
B.
,
Tang
,
Y. G.
, and
Lu
,
Y.
,
2022
, “
Identification of Linear Time-Varying Fractional Order Systems Using Block Pulse Functions Based on Repetitive Principle
,”
ISA Trans.
,
123
(
4
), pp.
218
229
.10.1016/j.isatra.2021.05.024
15.
Lin
,
Y.
,
Wang
,
Y. M.
, and
Chen
,
S. Q.
,
2016
, “
Approach for Multi-Attribute Matching Decision-Making Considering Interval-Value Intuitionistic Fuzzy Set
,”
Inf. Control
,
45
(
2
), pp.
204
210
.10.13976/j.cnki.xk.2016.0204
16.
Payan
,
A.
, and
Noora
,
A. A.
,
2014
, “
A Linear Modelling to Solve Multi-Objective Linear Fractional Programming Problem With Fuzzy Parameters
,”
Int. J. Math. Model. Numer. Optimisation
,
5
(
3
), pp.
210
228
.10.1504/IJMMNO.2014.063268
17.
Wang
,
H.
,
Yu
,
Y.
, and
Wen
,
G.
,
2014
, “
Stability Analysis of Fractional-Order Neural Networks With Time Delay
,”
Neural Networks.
,
55
(
7
), pp.
98
109
.10.1016/j.neunet.2014.03.012
18.
Mishra
,
P.
,
Kumar
,
V.
, and
Rana
,
K. P. S.
,
2015
, “
A Fractional Order Fuzzy PID Controller for Binary Distillation Column Control
,”
Expert Syst. Appl.
,
42
(
22
), pp.
8533
8549
.10.1016/j.eswa.2015.07.008
19.
Chinnadurai
,
V.
, and
Muthukumar
,
S.
,
2016
, “
Solving the Linear Fractional Programming Problem in a Fuzzy Environment: Numerical Approach
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6148
6164
.10.1016/j.apm.2016.01.044
20.
Wu
,
R.
, and
Fečkan
,
M.
,
2015
, “
Stability Analysis of Impulsive Fractional-Order Systems by Vector Comparison Principle
,”
Nonlinear Dyn.
,
82
(
4
), pp.
2007
2019
.10.1007/s11071-015-2295-7
21.
Qi
,
M.
,
Yang
,
Z. P.
, and
Xu
,
T. Z.
,
2017
, “
A Reproducing Kernel Method for Solving Nonlocal Fractional Boundary Value Problems With Uncertainty
,”
Soft Comput.
,
21
(
14
), pp.
4019
4028
.10.1007/s00500-016-2052-y
22.
Kuvshinova
,
A. N.
,
Tsyganov
,
A. V.
,
Yu
,
V. T.
, and
Garza
,
H. R. T.
,
2021
, “
Parameter Identification Algorithm for Convection-Diffusion Transport Model
,”
J. Phys. Conf. Ser.
,
1745
(
1
), p.
012110
.10.1088/1742-6596/1745/1/012110
23.
Oukacine
,
S.
,
Djamah
,
T.
,
Djennoune
,
S.
,
Mansouri
,
R.
, and
Bettayeb
,
M.
,
2013
, “
Multi-Model Identification of a Fractional Non Linear System
,”
IFAC Proc. Vol.
,
46
(
1
), pp.
48
53
.10.3182/20130204-3-FR-4032.00183
You do not currently have access to this content.