Abstract

A novel modeling framework combining arbitrary Lagrange-Euler and referenced nodal coordinate formulation (ALE-RNCF) is proposed for deployment dynamics and control of a hub-spoke tethered satellite formation. The ALE-RNCF approach allows for an accurate analysis of the intricate coupling effect between the orbit, attitude, and deployment dynamics, and its strengths lie in overcoming the accuracy loss and low-efficiency issues when dealing with spatial and temporal multiscale problems. Specifically, the orbital and attitude motions are separated with vibrations of the variable-length ALE tethers through the RNCF, which is the main distinguishing feature over the widely-used absolute nodal coordinate formulation. To achieve stable deployment, the control torque is added to the central satellite by employing the proportional-differential algorithm, where the maximum tension of tethers or the spinning angular velocity is selected as the control object. Various cases with different deployment velocities, target tensions, and orbital heights are simulated and corresponding effects on the deployment performance are analyzed. The proposed ALE-RNCF approach provides a comprehensive understanding of the orbit-attitude-structure coupled behavior during the deployment of the hub-spoke tethered satellite formation and contributes to the development of effective control strategies.

References

1.
Luo
,
S.
,
Cui
,
N.
,
Wang
,
X.
,
Fan
,
Y.
, and
Shi
,
R.
,
2022
, “
Model and Optimization of the Tether for a Segmented Space Elevator
,”
Aerospace
,
9
(
5
), p.
278
.10.3390/aerospace9050278
2.
Shi
,
G.
,
Li
,
G.
,
Zhu
,
Z.
, and
Zhu
,
Z. H.
,
2019
, “
Dynamics and Operation Optimization of Partial Space Elevator With Multiple Climbers
,”
Adv. Space Res.
,
63
(
10
), pp.
3213
3222
.10.1016/j.asr.2019.01.022
3.
Kojima
,
H.
,
Fukatsu
,
K.
, and
Trivailo
,
P. M.
,
2015
, “
Mission-Function Control of Tethered Satellite/Climber System
,”
Acta Astronaut.
,
106
, pp.
24
32
.10.1016/j.actaastro.2014.10.024
4.
Yu
,
B. S.
,
Huang
,
Z.
,
Geng
,
L. L.
, and
Jin
,
D. P.
,
2019
, “
Stability and Ground Experiments of a Spinning Triangular Tethered Satellite Formation on a Low Earth Orbit
,”
Aerosp. Sci. Technol.
,
92
, pp.
595
604
.10.1016/j.ast.2019.06.012
5.
Trushlyakov
,
V.
, and
Yudintsev
,
V.
,
2022
, “
Dynamics of Rotating Tethered System for Active Debris Removal
,”
Acta Astronaut.
,
195
, pp.
405
415
.10.1016/j.actaastro.2022.03.023
6.
Bandyopadhyay
,
S.
,
Foust
,
R.
,
Subramanian
,
G. P.
,
Chung
,
S.-J.
, and
Hadaegh
,
F. Y.
,
2016
, “
Review of Formation Flying and Constellation Missions Using Nanosatellites
,”
J. Spacecr. Rockets
,
53
(
3
), pp.
567
578
.10.2514/1.A33291
7.
Bassetto
,
M.
,
Niccolai
,
L.
,
Quarta
,
A. A.
, and
Mengali
,
G.
,
2022
, “
A Comprehensive Review of Electric Solar Wind Sail Concept and Its Applications
,”
Prog. Aerosp. Sci.
,
128
, p.
100768
.10.1016/j.paerosci.2021.100768
8.
Guang
,
Z.
,
Xingzi
,
B.
, and
Bin
,
L.
,
2019
, “
Optimal Deployment of Spin-Stabilized Tethered Formations With Continuous Thrusters
,”
Nonlinear Dyn.
,
95
(
3
), pp.
2143
2162
.10.1007/s11071-018-4682-3
9.
Huang
,
P.
,
Zhang
,
F.
,
Chen
,
L.
,
Meng
,
Z.
,
Zhang
,
Y.
,
Liu
,
Z.
, and
Hu
,
Y.
,
2018
, “
A Review of Space Tether in New Applications
,”
Nonlinear Dyn.
,
94
(
1
), pp.
1
19
.10.1007/s11071-018-4389-5
10.
Yu
,
B. S.
, and
Zhu
,
Z. H.
,
2023
, “
Out-of-Plane Chaotic Motion and Suppression for Tethered Tug-Debris Systems With Thrust Perturbation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
123
, p.
107273
.10.1016/j.cnsns.2023.107273
11.
Yu
,
B. S.
, and
Zhu
,
Z. H.
,
2023
, “
Symmetric and Asymmetric Dynamics of a Tethered Satellite in Nontypical Planes
,”
Acta Astronaut.
,
202
, pp.
585
594
.10.1016/j.actaastro.2022.11.019
12.
Zhu
,
G.
,
Lu
,
K.
,
Cao
,
Q.
,
Huang
,
P.
, and
Zhang
,
K.
,
2022
, “
Dynamic Behavior Analysis of Tethered Satellite System Based on Floquet Theory
,”
Nonlinear Dyn.
,
109
(
3
), pp.
1379
1396
.10.1007/s11071-022-07466-8
13.
Yu
,
B. S.
,
Jin
,
D. P.
, and
Wen
,
H.
,
2017
, “
Analytical Deployment Control Law for a Flexible Tethered Satellite System
,”
Aerosp. Sci. Technol.
,
66
, pp.
294
303
.10.1016/j.ast.2017.02.026
14.
Sidorenko
,
V. V.
, and
Celletti
,
A.
,
2010
, “
A ‘Spring–Mass’ Model of Tethered Satellite Systems: Properties of Planar Periodic Motions
,”
Celest Mech Dyn Astr
,
107
(
1–2
), pp.
209
231
.10.1007/s10569-010-9275-5
15.
Ismail
,
N. A.
, and
Cartmell
,
M. P.
,
2016
, “
Three Dimensional Dynamics of a Flexible Motorised Momentum Exchange Tether
,”
Acta Astronaut.
,
120
, pp.
87
102
.10.1016/j.actaastro.2015.12.001
16.
Min
,
B. N.
,
Misra
,
A. K.
, and
Modi
,
V. J.
,
1999
, “
Nonlinear Free Vibration of a Spinning Tether
,”
J Astronaut Sci
,
47
(
1–2
), pp.
1
23
.10.1007/BF03546207
17.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
18.
Li
,
G.
,
Zhu
,
Z. H.
,
Du
,
C.
, and
Meguid
,
S. A.
,
2019
, “
Characteristics of Coupled Orbital-Attitude Dynamics of Flexible Electric Solar Wind Sail
,”
Acta Astronaut.
,
159
, pp.
593
608
.10.1016/j.actaastro.2019.02.009
19.
Li
,
G.
,
Zhu
,
Z. H.
, and
Du
,
C.
,
2020
, “
Flight Dynamics and Control Strategy of Electric Solar Wind Sails
,”
J. Guid., Control, Dyn.
,
43
(
3
), pp.
462
474
.10.2514/1.G004608
20.
Du
,
C.
,
Zhu
,
Z. H.
, and
Li
,
G.
,
2021
, “
Rigid-Flexible Coupling Effect on Attitude Dynamics of Electric Solar Wind Sail
,”
Commun. Nonlinear Sci. Numer. Simul.
,
95
, p.
105663
.10.1016/j.cnsns.2020.105663
21.
Sun
,
J.
,
Chen
,
E.
,
Chen
,
T.
, and
Jin
,
D.
,
2022
, “
Spin Dynamics of a Long Tethered Sub-Satellite System in Geostationary Orbit
,”
Acta Astronaut.
,
195
, pp.
12
26
.10.1016/j.actaastro.2022.02.026
22.
Zhang
,
B.
,
Fan
,
W.
, and
Ren
,
H.
,
2023
, “
A Universal Quadrilateral Shell Element for the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
10
), p.
101001
.10.1115/1.4062630
23.
Ren
,
H.
, and
Fan
,
W.
,
2023
, “
An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes
,”
Thin-Walled Struct.
,
182
, p.
110257
.10.1016/j.tws.2022.110257
24.
Yang
,
S.
,
Zhu
,
X.
, and
Ren
,
H.
,
2023
, “
Dynamic Analysis of a Deep-Towed Seismic System Based on a Flexible Multi-Body Dynamics Frame
,”
Ocean Eng.
,
279
, p.
114587
.10.1016/j.oceaneng.2023.114587
25.
Ren
,
H.
, and
Yang
,
K.
,
2021
, “
A Referenced Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
51
(
3
), pp.
305
342
.10.1007/s11044-020-09750-0
26.
Ren
,
H.
,
Yuan
,
T.
,
Huo
,
M.
,
Zhao
,
C.
, and
Zeng
,
S.
,
2021
, “
Dynamics and Control of a Full-Scale Flexible Electric Solar Wind Sail Spacecraft
,”
Aerosp. Sci. Technol.
,
119
, p.
107087
.10.1016/j.ast.2021.107087
27.
Yuan
,
T.
,
Fan
,
W.
, and
Ren
,
H.
,
2023
, “
A General Nonlinear Order-Reduction Method Based on the Referenced Nodal Coordinate Formulation for a Flexible Multibody System
,”
Mechanism Mach. Theory
,
185
, p.
105290
.10.1016/j.mechmachtheory.2023.105290
28.
Zeng
,
S.
,
Fan
,
W.
, and
Ren
,
H.
,
2023
, “
Attitude Control for a Full-Scale Flexible Electric Solar Wind Sail Spacecraft on Heliocentric and Displaced Non-Keplerian Orbits
,”
Acta Astronaut.
,
211
, pp.
734
749
.10.1016/j.actaastro.2023.07.005
29.
Chen
,
Z.
,
Ren
,
H.
,
Fan
,
W.
, and
Zhang
,
L.
,
2024
, “
Dynamic Modeling and Analysis of a Large-Scale Hoop-Column Antenna Using the Referenced Nodal Coordinate Formulation
,”
Appl. Math. Modell.
,
125
, pp.
738
755
.10.1016/j.apm.2023.09.003
30.
Zhang
,
L.
,
Fan
,
W.
,
Chen
,
Z.
, and
Ren
,
H.
,
2024
, “
Dynamics Modeling and Attitude-Vibration Hybrid Control of a Large Flexible Space Structure
,”
J. Vib. Control
.10.1177/10775463241227474
31.
Zhu
,
W. D.
, and
Ren
,
H.
,
2013
, “
An Accurate Spatial Discretization and Substructure Method With Application to Moving Elevator Cable-Car Systems—Part I: Methodology
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051036
.10.1115/1.4024557
32.
Ren
,
H.
, and
Zhu
,
W. D.
,
2013
, “
An Accurate Spatial Discretization and Substructure Method With Application to Moving Elevator Cable-Car Systems—Part II: Application
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051037
.10.1115/1.4024558
33.
Yu
,
B. S.
, and
Jin
,
D. P.
,
2010
, “
Deployment and Retrieval of Tethered Satellite System Under J2 Perturbation and Heating Effect
,”
Acta Astronaut.
,
67
(
7–8
), pp.
845
853
.10.1016/j.actaastro.2010.05.013
34.
Luo
,
C.
,
Wen
,
H.
, and
Jin
,
D.
,
2019
, “
Deployment of Flexible Space Tether System With Satellite Attitude Stabilization
,”
Acta Astronaut.
,
160
, pp.
240
250
.10.1016/j.actaastro.2019.04.036
35.
Steindl
,
A.
, and
Troger
,
H.
,
2003
, “
Optimal Control of Deployment of a Tethered Subsatellite
,”
Nonlinear Dyn.
, 31, pp. 257–274.10.1023/A:1022956002484
36.
Steindl
,
A.
,
2016
, “
Time Optimal Control for the Deployment of a Tethered Satellite Allowing for a Massive Tether
,”
Meccanica
,
51
(
11
), pp.
2741
2751
.10.1007/s11012-016-0541-9
37.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
.10.1007/s11044-010-9242-7
38.
Tang
,
J. L.
,
Ren
,
G. X.
,
Zhu
,
W. D.
, and
Ren
,
H.
,
2011
, “
Dynamics of Variable-Length Tethers With Application to Tethered Satellite Deployment
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3411
3424
.10.1016/j.cnsns.2010.11.026
39.
Liu
,
J.-P.
,
Cheng
,
Z.-B.
, and
Ren
,
G.-X.
,
2018
, “
An Arbitrary Lagrangian–Eulerian Formulation of a Geometrically Exact Timoshenko Beam Running Through a Tube
,”
Acta Mech.
,
229
(
8
), pp.
3161
3188
.10.1007/s00707-018-2161-z
40.
Peng
,
C.
,
Yang
,
C.
,
Xue
,
J.
,
Gong
,
Y.
, and
Zhang
,
W.
,
2022
, “
An Adaptive Variable-Length Cable Element Method for Form-Finding Analysis of Railway Catenaries in an Absolute Nodal Coordinate Formulation
,”
Eur. J. Mech. - A/Solids
,
93
, p.
104545
.10.1016/j.euromechsol.2022.104545
41.
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2013
, “
A Lagrange–Eulerian Formulation of an Axially Moving Beam Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
343
358
.10.1007/s11044-013-9350-2
42.
Li
,
K.
,
Yu
,
Z.
,
Lan
,
P.
,
Tian
,
Q.
, and
Lu
,
N.
,
2024
, “
ALE-ANCF Circular Cross-Section Beam Element and Its Application on the Dynamic Analysis of Cable-Driven Mechanism
,”
Multibody Syst. Dyn.
,
60
(
3
), pp.
417
446
.10.1007/s11044-023-09929-1
43.
Zhang
,
H.
,
Guo
,
J.-Q.
,
Liu
,
J.-P.
, and
Ren
,
G.-X.
,
2020
, “
An Efficient Multibody Dynamic Model of Arresting Cable Systems Based on ALE Formulation
,”
Mechanism Mach. Theory
,
151
, p.
103892
.10.1016/j.mechmachtheory.2020.103892
44.
Luo
,
C. Q.
,
Sun
,
J. L.
,
Wen
,
H.
, and
Jin
,
D. P.
,
2020
, “
Dynamics of a Tethered Satellite Formation for Space Exploration Modeled Via ANCF
,”
Acta Astronaut.
,
177
, pp.
882
890
.10.1016/j.actaastro.2019.11.028
45.
Bai
,
Z.
, and
Jiang
,
X.
,
2021
, “
Effects of Orbital Perturbations on Deployment Dynamics of Tethered Satellite System Using Variable-Length Element
,”
IEEE Access
,
9
, pp.
22399
22407
.10.1109/ACCESS.2021.3056458
46.
Bai
,
Z.
,
Jiang
,
X.
, and
Fu
,
X.
,
2023
, “
Investigation of the Retrieval Dynamics of the Tethered Satellites Using ANCF-ALE Variable-Length Element
,”
IEEE Trans. Aerosp. Electron. Syst.
, 59(2), pp.
1980
1988
.10.1109/TAES.2022.3208531
47.
Fulton
,
J.
, and
Schaub
,
H.
,
2018
, “
Fixed-Axis Electric Sail Deployment Dynamics Analysis Using Hub-Mounted Momentum Control
,”
Acta Astronaut.
,
144
, pp.
160
170
.10.1016/j.actaastro.2017.11.048
48.
Li
,
G.
,
Zhu
,
Z. H.
, and
Du
,
C.
,
2021
, “
Stability and Control of Radial Deployment of Electric Solar Wind Sail
,”
Nonlinear Dyn
,
103
(
1
), pp.
481
501
.10.1007/s11071-020-06067-7
49.
Huang
,
P.
,
Zhao
,
Y.
,
Zhang
,
F.
,
Ma
,
J.
,
Meng
,
Z.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2017
, “
Deployment/Retraction of the Rotating Hub-Spoke Tethered Formation System
,”
Aerosp. Sci. Technol.
,
69
, pp.
495
503
.10.1016/j.ast.2017.07.013
50.
Liu
,
C.
,
Wang
,
W.
,
Kang
,
J.
, and
Zhu
,
Z. H.
,
2023
, “
Spin Deployment of Hub-Spoke Tethered Satellite Formation With Sliding Mode Tether Tension Control
,”
Adv. Space Res.
,
71
(
5
), pp.
2509
2520
.10.1016/j.asr.2022.11.001
51.
Fan
,
W.
,
Zhang
,
S.
,
Zhu
,
W.
, and
Zhu
,
H.
,
2022
, “
An Efficient Dynamic Formulation for the Vibration Analysis of a Multi-Span Power Transmission Line Excited by a Moving Deicing Robot
,”
Appl. Math. Modell.
,
103
, pp.
619
635
.10.1016/j.apm.2021.10.040
52.
Chen
,
K.-D.
,
Liu
,
J.-P.
,
Chen
,
J.-Q.
,
Zhong
,
X.-Y.
,
Mikkola
,
A.
,
Lu
,
Q.-H.
, and
Ren
,
G.-X.
,
2020
, “
Equivalence of Lagrange's Equations for Non-Material Volume and the Principle of Virtual Work in ALE Formulation
,”
Acta Mech
,.
231
(
3
), pp.
1141
1157
.10.1007/s00707-019-02576-8
53.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
You do not currently have access to this content.