Abstract

This paper addresses the design of a reconfigurable mobile manipulator consisting of a mobile base and a collaborative serial robot. The robotic system is meant to work in an industrial environment and perform different logistic tasks. Unlike commercial solutions, the mobile base and the anthropomorphic arm are free to decouple and work separately as two different entities, thus optimizing working times and maximizing the hardware utilization ratio. The proposed mobile manipulator is equipped with an automatic braking system to ensure safety and stability during manipulation, a lifting system that allows the robotic arm to work at different heights, and a spatial referencing process to compensate for positioning error of the mobile base. An illustrative working cycle is implemented in an industrially relevant environment to test all features and show potentialities, in terms of flexibility and reconfigurability, of the presented solution.

References

1.
Azadeh
,
K.
,
De Koster
,
R.
, and
Roy
,
D.
,
2019
, “
Robotized and Automated Warehouse Systems: Review and Recent Developments
,”
Transp. Sci.
,
53
(
4
), pp.
917
945
.10.1287/trsc.2018.0873
2.
Büyüközkan
,
G.
, and
Göçer
,
F.
,
2018
, “
Digital Supply Chain: Literature Review and a Proposed Framework for Future Research
,”
Comput. Ind.
,
97
, pp.
157
177
.10.1016/j.compind.2018.02.010
3.
Bloss
,
R.
,
2016
, “
Collaborative Robots Are Rapidly Providing Major Improvements in Productivity, Safety, Programing Ease, Portability and Cost While Addressing Many New Applications
,”
Ind. Robot
,
43
(
5
), pp.
463
468
.10.1108/IR-05-2016-0148
4.
Wurman
,
P. R.
,
D'Andrea
,
R.
, and
Mountz
,
M.
,
2008
, “
Coordinating Hundreds of Cooperative, Autonomousvehicles in Warehouses
,”
AI Mag.
,
29
(
1
), pp.
9
9
.10.1609/aimag.v29i1.2082
5.
Piemngam
,
K.
,
Nilkhamhang
,
I.
, and
Bunnun
,
P.
,
2019
, “
Development of Autonomous Mobile Robot Platform With Mecanum Wheels
,” First International Symposium on Instrumentation, Control Artificial Intelligence, and Robotics (
ICASYMP
),
Bangkok, Thailand
, Jan. 16–18, pp.
90
93
.10.1109/ICA-SYMP.2019.8646085
6.
Wu
,
Y.
,
Balatti
,
P.
,
Lorenzini
,
M.
,
Zhao
,
F.
,
Kim
,
W.
, and
Ajoudani
,
A.
,
2019
, “
A Teleoperation Interface for Loco-Manipulation Control of Mobile Collaborative Robotic Assistant
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3593
3600
.10.1109/LRA.2019.2928757
7.
Balatti
,
P.
,
Fusaro
,
F.
,
Villa
,
N.
,
Lamon
,
E.
, and
Ajoudani
,
A.
,
2020
, “
A Collaborative Robotic Approach to Autonomous Pallet Jack Transportation and Positioning
,”
IEEE Access
,
8
, pp.
142191
142204
.10.1109/ACCESS.2020.3013382
8.
Krug
,
R.
,
Stoyanov
,
T.
,
Tincani
,
V.
,
Andreasson
,
H.
,
Mosberger
,
R.
,
Fantoni
,
G.
, and
Lilienthal
,
A. J.
,
2016
, “
The Next Step in Robot Commissioning: Autonomouspicking and Palletizing
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
546
553
.10.1109/LRA.2016.2519944
9.
Causo
,
A.
,
Chong
,
Z.
,
Luxman
,
R.
, and
Chen
,
I.
,
2017
, “
Visual Marker-Guided Mobile Robot Solution for Automated Item Picking in a Warehouse
,” IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Munich, Germany
, July 3–7, pp.
201
206
.10.1109/AIM.2017.8014018
10.
Eppner
,
C.
,
Höfer
,
S.
,
Jonschkowski
,
R.
,
Martin- Martin
,
R.
,
Sieverling
,
A.
,
Wall
,
V.
, and
Brock
,
O.
,
2017
, “
Lessons From the Amazon Picking Challenge: Four Aspects of Building Robotic Systems
,” 26th International Joint Conference on Artificial Intelligence (
IJCAI
),
Melbourne, Australia
, Aug. 19–25, pp.
4831
4835
.10.15607/RSS.2016.XII.036
11.
Carstensen
,
T.
,
Carstensen
,
J.
,
Dick
,
A.
,
Falkenhain
,
S.
,
Hübner
,
J.
,
Kammel
,
R.
,
Wentz
,
A.
,
Aden
,
S.
,
Friederichs
,
J.
, and
Kotlarski
,
J.
,
2016
, “
Staying on Top at Robocup@Work 2016
,”
RoboCup 2016: Robot World Cup XX, 20th Annual RobotCup International Symposium
,
S.
Behnke
,
R.
Sheh
,
S.
Sarıel
, and
D. D.
Lee
, eds.,
Leipzig, Germany
, 30 June–4 July, pp.
601
612
.
12.
Pedrosa
,
E.
,
Lim
,
G. H.
,
Amaral
,
F.
,
Pereira
,
A.
,
Cunha
,
B.
,
Azevedo
,
J. L.
,
Dias
,
P.
, et al.,
2020
,
TIMAIRIS: Autonomous Blank Feeding for Packaging Machines
,
Springer International Publishing
, New York, pp.
153
186
.
13.
Comari
,
S.
,
Di Leva
,
R.
,
Carricato
,
M.
,
Badini
,
S.
,
Carapia
,
A.
,
Collepalumbo
,
G.
,
Gentili
,
A.
,
Mazzotti
,
C.
,
Staglianò
,
K.
, and
Rea
,
D.
,
2022
, “
Mobile Cobots for Autonomous Raw-Material Feeding of Automatic Packaging Machines
,”
J. Manuf. Syst.
,
64
, pp.
211
224
.10.1016/j.jmsy.2022.06.007
14.
Comari
,
S.
, and
Carricato
,
M.
,
2022
, “
Vision-Based Robotic Grasping of Reels for Automatic Packaging Machines
,”
Appl. Sci.
,
12
(
15
), p.
7835
.10.3390/app12157835
15.
Zaccaria
,
F.
,
Baldassarri
,
A.
,
Palli
,
G.
, and
Carricato
,
M.
,
2021
, “
A Mobile Robotized System for Depalletizing Applications: Design and Experimentation
,”
IEEE Access
,
9
, pp.
96682
96691
.10.1109/ACCESS.2021.3092580
16.
Aleotti
,
J.
,
Baldassarri
,
A.
,
Bonfè
,
M.
,
Carricato
,
M.
,
Chiaravalli
,
D.
,
Di Leva
,
R.
,
Fantuzzi
,
C.
, et al.,
2021
, “
Toward Future Automatic Warehouses: An Autonomous Depalletizing System Based on Mobile Manipulation and 3d Perception
,”
Appl. Sci.
,
11
(
13
), p.
5959
.10.3390/app11135959
17.
Bogh
,
S.
,
Schou
,
C.
,
Rühr
,
T.
,
Kogan
,
Y.
,
Dömel
,
A.
,
Brucker
,
M.
,
Eberst
,
C.
,
Tornese
,
R.
,
Sprunk
,
C.
, and
Tipaldi
,
G. D.
,
2014
, “
Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility
,”
ISR/Robotik; 41st International Symposium on Robotics
,
Munich, Germany
, June 2–3, pp.
1
8
.https://ieeexplore.ieee.org/abstract/document/6840145
18.
Štibinger
,
P.
,
Broughton
,
G.
,
Majer
,
F.
,
Rozsypalek
,
Z.
,
Wang
,
A.
,
Jindal
,
K.
,
Zhou
,
A.
,
Thakur
,
D.
,
Loianno
,
G.
,
Krajnik
,
T.
, and
Saska
,
M.
,
2021
, “
Mobile Manipulator for Autonomous Localization, Grasping and Precise Placement of Construction Material in a Semi-Structured Environment
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
2595
2602
.10.1109/LRA.2021.3061377
19.
KUKA
, “
Kuka Iiwa
,” accessed May 16,
2022
, https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa
21.
Fetch Robotics
, “
Fetch fright
,” accessed May 16,
2022
, https://fetchrobotics.borealtech.com/robotics-platforms/fetch-mobile-manipulator/?lang=en
22.
Robotnik
, “
Robotnik Mobile Manipulators
,” accessed May 16,
2022
, https://robotnik.eu/products/ mobile-manipulators/
23.
Arnarson
,
H.
, and
Solvang
,
B.
,
2022
, “
Reconfigurable Autonomous Industrial Mobile Manipulator System
,” IEEE/SICE International Symposium on System Integration (
SII
), Narvik, Norway, Jan. 9–12, pp.
772
777
.10.1109/SII52469.2022.9708887
24.
Ewellix
, “
Ewellix Liftkit
,” accessed May 19,
2022
, https://www.ewellix.com/en/products/7th-axis-for-robot/liftkit
25.
Papari
,
G.
, and
Petkov
,
N.
,
2011
, “
Edge and Line Oriented Contour Detection: State of the Art
,”
Image Vision Comput.
,
29
(
2–3
), pp.
79
103
.10.1016/j.imavis.2010.08.009
26.
Bradski
,
G.
,
Pisarevsky
,
V.
,
Cheng
,
W.
,
Yu
,
Q.
, and
Cheng
,
H.
,
2003
, “
Ch and Opencv: An Open Relationship With Vision
,” pp.
18
+
33–35
.
27.
Kalaitzakis
,
M.
,
Carroll
,
S.
,
Ambrosi
,
A.
,
Whitehead
,
C.
, and
Vitzilaios
,
N.
,
2020
, “
Experimental Comparison of Fiducial Markers for Pose Estimation
,” International Conference on Unmanned Aircraft Systems (
ICUAS
), Athens, Greece, Sept. 1–4, pp.
781
789
.10.1109/ICUAS48674.2020.9213977
28.
Zhang
,
Z.
,
2000
, “
A Flexible New Technique for Camera Calibration
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
11
), pp.
1330
1334
.10.1109/34.888718
29.
Tsai
,
R.
, and
Lenz
,
R.
,
1989
, “
A New Technique for Fully Autonomous and Efficient 3d Robotics Hand/Eye Calibration
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
345
358
.10.1109/70.34770
You do not currently have access to this content.