Abstract

In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semidiscretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness, efficacy and convergence of our method by studying several candidate DDEs with time-periodic parameters and/or delays, and comparing the results with those obtained from the Galerkin approximations.

References

1.
Kyrychko
,
Y. N.
, and
Hogan
,
S. J.
,
2010
, “
On the Use of Delay Equations in Engineering Applications
,”
J. Vib. Control
,
16
(
7–8
), pp.
943
960
.10.1177/1077546309341100
2.
Sipahi
,
R.
,
Niculescu
,
S. I.
,
Abdallah
,
C. T.
,
Michiels
,
W.
, and
Gu
,
K.
,
2011
, “
Stability and Stabilization of Systems With Time Delay
,”
IEEE Control Syst. Mag.
,
31
(
1
), pp.
38
65
.10.1109/MCS.2010.939135
3.
Sadath
,
A.
, and
Vyasarayani
,
C.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061008
.10.1115/1.4028631
4.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
5.
Pekar
,
L.
, and
Gao
,
Q.
,
2018
, “
Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results
,”
IEEE Access
,
6
, pp.
35457
35491
.10.1109/ACCESS.2018.2851453
6.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.10.1115/1.3124088
7.
Bobrenkov
,
O. A.
,
Butcher
,
E. A.
, and
Mann
,
B. P.
,
2013
, “
Application of the Liapunov–Floquet Transformation to Differential Equations With Time Delay and Periodic Coefficients
,”
J. Vib. Control
,
19
(
4
), pp.
521
537
.10.1177/1077546311433914
8.
Sun
,
J. Q.
, and
Song
,
B.
,
2009
, “
Control Studies of Time–Delayed Dynamical Systems With the Method of Continuous Time Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3933
3944
.10.1016/j.cnsns.2009.02.011
9.
Gomez
,
M. A.
,
Egorov
,
A. V.
,
Mondié
,
S.
, and
Zhabko
,
A. P.
,
2019
, “
Computation of the Lyapunov Matrix for Periodic Time-Delay Systems and Its Application to Robust Stability Analysis
,”
Syst. Control Lett.
,
132
, p.
104501
.10.1016/j.sysconle.2019.104501
10.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2014
,
Stability of Linear Delay Differential Equations: A Numerical Approach With MATLAB
,
Springer
,
New York
.
11.
Butcher
,
E. A.
, and
Bobrenkov
,
O. A.
,
2011
, “
On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1541
1554
.10.1016/j.cnsns.2010.05.037
12.
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2013
, “
A Spectral Element Approach for the Stability Analysis of Time-Periodic Delay Equations With Multiple Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
8
), pp.
2129
2141
.10.1016/j.cnsns.2012.11.030
13.
Lehotzky
,
D.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2016
, “
Extension of the Spectral Element Method for Stability Analysis of Time-Periodic Delay-Differential Equations With Multiple and Distributed Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
35
, pp.
177
189
.10.1016/j.cnsns.2015.11.007
14.
Borgioli
,
F.
,
Hajdu
,
D.
,
Insperger
,
T.
,
Stepan
,
G.
, and
Michiels
,
W.
,
2020
, “
Pseudospectral Method for Assessing Stability Robustness for Linear Time-Periodic Delayed Dynamical Systems
,”
Int. J. Numer. Methods Eng.
,
121
(
16
), pp.
3505
3528
.10.1002/nme.6368
15.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021011
.10.1115/1.4026989
16.
Long
,
X.
,
Insperger
,
T.
, and
Balachandran
,
B.
,
2009
, “
Systems With Periodic Coefficients and Periodically Varying Delays: Semidiscretization–Based Stability Analysis
,”
Delay Differential Equations: Recent Adv. New Directions
, pp.
131
153
.10.1007/978-0-387-85595-0
17.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
,
53
(
2
), pp.
619
642
.10.1016/S0007-8506(07)60032-8
18.
Radulescu
,
R.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1997
, “
An Investigation of Variable Spindle Speed Face Milling for Tool–Work Structures With Complex Dynamics, Part 1: Simulation Results
,”
J. Manuf. Sci. Eng.
,
119
(
3
), pp.
266
272
.10.1115/1.2831103
19.
Liu
,
Z.
, and
Liao
,
L.
,
2004
, “
Existence and Global Exponential Stability of Periodic Solution of Cellular Neural Networks With Time-Varying Delays
,”
J. Math. Anal. Appl.
,
290
(
1
), pp.
247
262
.10.1016/j.jmaa.2003.09.052
20.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay–Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
21.
Sastry
,
S.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Dullerud
,
G. E.
,
2001
, “
Chatter Stability Analysis of the Variable Speed Face–Milling Process
,”
J. Manuf. Sci. Eng.
,
123
(
4
), pp.
753
756
.10.1115/1.1373649
22.
Kandala
,
S. S.
,
Uchida
,
T. K.
, and
Vyasarayani
,
C. P.
,
2021
, “
Pole Placement for Delay Differential Equations With Time–Periodic Delays Using Galerkin Approximations
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
9
), p.
091007
.10.1115/1.4051590
23.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
24.
Vyasarayani
,
C. P.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.10.1007/s40435-014-0060-2
25.
Ahsan
,
Z.
,
Sadath
,
A.
,
Uchida
,
T. K.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin–Arnoldi Algorithm for Stability Analysis of Time–Periodic Delay Differential Equations
,”
Nonlinear Dyn.
,
82
(
4
), pp.
1893
1904
.10.1007/s11071-015-2285-9
26.
Bayly
,
P. V.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
,
Peters
,
D. A.
,
Stepan
,
G.
, and
Insperger
,
T.
,
2002
, “
Effects of Radial Immersion and Cutting Direction on Chatter Instability in End–Milling
,”
ASME
Paper No. IMECE2002-39116.10.1115/IMECE2002-39116
You do not currently have access to this content.