Abstract

This paper presents an automatic procedure to enhance the accuracy of the numerical solution of an optimal control problem (OCP) discretized via direct collocation at Gauss–Legendre points. First, a numerical solution is obtained by solving a nonlinear program (NLP). Then, the method evaluates its accuracy and adaptively changes both the degree of the approximating polynomial within each mesh interval and the number of mesh intervals until a prescribed accuracy is met. The number of mesh intervals is increased for all state vector components alike, in a classical fashion. Instead, improving on state-of-the-art procedures, the degrees of the polynomials approximating the different components of the state vector are allowed to assume, in each finite element, distinct values. This explains the pnh definition, where n is the state dimension. With respect to the approaches found in the literature, where the degree is always raised to the highest order for all the state components, our methods allow a sensible reduction of the overall number of variables of the resulting NLP, with a corresponding reduction of the computational burden. Numerical tests on three OCP problems highlight that, under the same maximum allowable error, by independently selecting the degree of the polynomial for each state, our method effectively picks lower degrees for some of the states, thus reducing the overall number of variables in the NLP. Accordingly, various advantages are brought about, the most remarkable being: (i) an increased computational efficiency for the final enhanced mesh with solution accuracy still within the prescribed tolerance, (ii) a reduced risk of being trapped by local minima due to the reduced NLP size, and (iii) a gain of the robustness of the convergence process due to the better-behaved solution landscapes.

References

1.
Fahroo
,
F.
, and
Ross
,
I. M.
,
2002
, “
Direct Trajectory Optimization by a Chebyshev Pseudospectral Method
,”
J. Guid., Control, Dyn.
,
25
(
1
), pp.
160
166
.10.2514/2.4862
2.
Elnagar
,
G.
,
Kazemi
,
M. A.
, and
Razzaghi
,
M.
,
1995
, “
The Pseudospectral Legendre Method for Discretizing Optimal Control Problems
,”
IEEE Trans. Autom. Control
,
40
(
10
), pp.
1793
1796
.10.1109/9.467672
3.
Fahroo
,
F.
, and
Ross
,
I. M.
,
2000
, “
A Spectral Patching Method for Direct Trajectory Optimization
,”
J. Astronaut. Sci.
,
48
(
2–3
), pp.
269
286
.10.1007/BF03546280
4.
Gong
,
Q.
, and
Ross
,
I. M.
,
2006
, “
Autonomous Pseudospectral Knotting Methods for Space Mission Optimization
,”
Adv. Astronaut. Sci.
,
124I
, pp.
779
794
.
5.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Prog. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
6.
Rao
,
A. V.
,
Benson
,
D. A.
,
Darby
,
C.
,
Patterson
,
M. A.
,
Francolin
,
C.
,
Sanders
,
I.
, and
Huntington
,
G. T.
,
2010
, “
Algorithm 902: GPOPS, a Matlab Software for Solving Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral Method
,”
ACM Trans. Math. Software
,
37
(
2
), pp.
1
39
.10.1145/1731022.1731032
7.
Patterson
,
M. A.
,
Weinstein
,
M.
, and
Rao
,
A. V.
,
2013
, “
GPOPS-II: A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Software
,
39
(
3
), pp.
1
36
.10.1145/2450153.2450155
8.
Biegler
,
L. T.
, and
Zavala
,
V. M.
,
2009
, “
Large-Scale Nonlinear Programming Using IPOPT: An Integrating Framework for Enterprise-Wide Dynamic Optimization
,”
Comput. Chem. Eng.
,
33
(
3
), pp.
575
582
.10.1016/j.compchemeng.2008.08.006
9.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
10.
Betts
,
J. T.
,
Biehn
,
N.
,
Campbell
,
S. L.
, and
Huffman
,
W. P.
,
2000
, “
Compensating for Order Variation in Mesh Refinement for Direct Transcription Methods
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
147
158
.10.1016/S0377-0427(00)00465-9
11.
Ross
,
I. M.
,
Fahroo
,
F.
, and
Strizzi
,
J.
,
2003
, “
Adaptive Grids for Trajectory Optimization by Pseudospectral Methods
,”
Adv. Astronaut. Sci.
,
25
(
1
), pp.
160
166
.
12.
Fahroo
,
F.
, and
Ross
,
I. M.
,
2000
, “
Trajectory Optimization by Indirect Spectral Collocation Methods
,”
AIAA
Paper No. 2000-4028
.10.2514/6.2000-4028
13.
Binder
,
T.
,
Cruse
,
A.
,
Villar
,
C. A. C.
, and
Marquardt
,
W.
,
2000
, “
Dynamic Optimization Using a Wavelet Based Adaptive Control Vector Parameterization Strategy
,”
Comput. Chem. Eng.
,
24
(
2–7
), pp.
1201
1207
.10.1016/S0098-1354(00)00357-4
14.
Binder
,
T.
,
Blank
,
L.
,
Dahmen
,
W.
, and
Marquardt
,
W.
,
2000
, “
Grid Refinement in Multiscale Dynamic Optimization
,” Elsevier, Amsterdam, The Netherlands, Report No. LPT-2000-11.
15.
Schlegel
,
M.
,
Stockmann
,
K.
,
Binder
,
T.
, and
Marquardt
,
W.
,
2005
, “
Dynamic Optimization Using Adaptive Control Vector Parameterization
,”
Comput. Chem. Eng.
,
29
(
8
), pp.
1731
1751
.10.1016/j.compchemeng.2005.02.036
16.
Jain
,
S.
,
Tsiotras
,
P.
, and
Zhou
,
H. M.
,
2007
, “
Adaptive Multiresolution Mesh Refinement for the Solution of Evolution PDEs
,”
Proceedings of the IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
3525
3530
.10.1109/CDC.2007.4434075
17.
Jain
,
S.
, and
Tsiotras
,
P.
,
2008
, “
Trajectory Optimization Using Multiresolution Techniques
,”
J. Guid. Control Dyn.
,
31
(
5
), pp.
1424
1436
.10.2514/1.32220
18.
Garg
,
D.
,
Patterson
,
M.
,
Hager
,
W. W.
,
Rao
,
A. V.
,
Benson
,
D. A.
, and
Huntington
,
G. T.
,
2010
, “
A Unified Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods
,”
Automatica
,
46
(
11
), pp.
1843
1851
.10.1016/j.automatica.2010.06.048
19.
Darby
,
C. L.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2011
, “
Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method
,”
J. Spacecr. Rockets
,
48
(
3
), pp.
433
445
.10.2514/1.52136
20.
Darby
,
C. L.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2011
, “
An hp-Adaptive Pseudospectral Method for Solving Optimal Control Problems
,”
Opt. Control Appl. Methods
,
32
(
4
), pp.
476
502
.10.1002/oca.957
21.
Biegler
,
L. T.
,
2010
, “
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
,”
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
22.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1991
,
Spectral Methods in Fluid Dynamics
,
Springer
,
Heidelberg, Germany
.
23.
Fornberg
,
B.
,
1996
,
A Practical Guide to Pseudospectral Methods
,
Cambridge University Press
,
New York
.
24.
Babuška
,
I.
, and
Suri
,
M.
,
1990
, “
The p- and h-p Versions of the Finite Element Method, an Overview
,”
Comput. Methods Appl. Mech. Eng.
,
80
(
1–3
), pp.
5
26
.10.1016/0045-7825(90)90011-A
25.
Patterson
,
M. A.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2015
, “
A ph Mesh Refinement Method for Optimal Control
,”
Optimal Control Appl. Methods
,
36
(
4
), pp.
398
421
.10.1002/oca.2114
26.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
(Advances in Design and Control),
Siam
,
Philadelphia, PA
.
27.
Hou
,
H.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2012
, “
Convergence of a Gauss Pseudospectral Method for Optimal Control
,”
AIAA
Paper No.
2012
4452
.10.2514/6.2012-4452
28.
Hou
,
H.
,
2013
, “
Convergence Analysis of Orthogonal Collocation Methods for Unconstrained Optimal Control
,” Ph.D. thesis,
University of Florida
,
Gainesville, FL
.
You do not currently have access to this content.