Abstract

Nonlinear analysis of complex traffic flow systems can provide a deep understanding of the causes of various traffic phenomena and reduce traffic congestion, and bifurcation analysis is a powerful method for it. In this paper, based on the improved Aw–Rascle model, a new macroscopic traffic flow model is proposed, which takes into account the road factors and driver psychological factor in the curve environment which can effectively simulate many realistic traffic phenomena on curves. The macroscopic traffic flow model on curved road is analyzed by bifurcation, first, it is transformed into a nonlinear dynamical system, then its stability conditions and the existence conditions of bifurcations are derived, and the changes of trajectories near the equilibrium points are described by phase plane. From an equilibrium point, various bifurcation structures describing the nonlinear traffic flow are obtained. In this paper, the influence of different bifurcations on traffic flow is analyzed, and the causes of special traffic phenomena such as stop-and-go and traffic clustering are described using Hopf bifurcation as the starting point of density temporal evolution. The derivation and simulation show that both road factors and driver psychological factor affect the stability of traffic flow on curves, and the study of bifurcation in the curved traffic flow model provides decision support for traffic management.

References

1.
Saifuzzaman
,
M.
, and
Zheng
,
Z.
,
2014
, “
Incorporating Human-Factors in Car-Following Models: A Review of Recent Developments and Research Beeds
,”
Transp. Res. Part C Emer. Technol.
,
48
, pp.
379
403
.10.1016/j.trc.2014.09.008
2.
Hoogendoorn
,
S. P.
, and
Bovy
,
P.
,
2001
, “
State-of-the-Art of Vehicular Traffic Flow Modelling
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
215
(
4
), pp.
283
303
.10.1177/095965180121500402
3.
Olstam
,
J. J.
, and
Tapani
,
A.
,
2004
, “
Comparison of Car-Following Models
,”
Swedish National Road and Transport Research Institute
,
Linkping, Sweden
.
4.
Jin
,
Y. F.
,
Xu
,
M.
, and
Gao
,
Z.
,
2011
, “
Kdv and Kink-Antikink Solitons in an Extended Car-Following Model
,” ASME
J. Comput. Nonlinear Dyn.
,
6
(
1
), pp.
52
63
.
5.
Jin
,
Y. F.
, and
Xu
,
M.
,
2016
, “
Stability Analysis in a Car-Following Model With Reaction-Time Delay and Delayed Feedback Control
,”
Phys. A. Stat. Mech. Appl.
,
459
, pp.
107
116
.10.1016/j.physa.2016.04.038
6.
Wolfram
,
S.
,
1986
,
Theory and Application of Cellular Automata
,
World Scientific
,
Singapore
.
7.
Nagel
,
K.
, and
Schreckenberg
,
M.
,
1992
, “
A Cellular Automaton Model for Freeway Traffic
,”
J. Phys. I
,
2
(
12
), pp.
2221
2229
.10.1051/jp1:1992277
8.
Fontana
,
S. L. P.
,
1975
, “
On Boltzmann-Like Treatments for Traffic Flow: A Critical Review of the Basic Model and an Alternative Proposal for Dilute Traffic Analysis
,”
Transp. Res.
,
9
(
4
), pp.
225
235
.10.1016/0041-1647(75)90063-5
9.
Lighthill
,
M. J.
, and
Whitham
,
G. B.
,
1955
, “
On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
229
(
1178
), pp.
317
345
.
10.
Richards
,
P. I.
,
1956
, “
Shock Waves on the Highways
,”
Oper. Res.
,
4
(
1
), pp.
42
51
.10.1287/opre.4.1.42
11.
Payne
,
H. J.
,
1979
, “
Freflow: A Macroscopic Simulation Model of Freeway Traffic
,”
Transp. Res. Rec.
,
772
, pp.
68
77
.
12.
Whitham
,
G. B.
,
1974
,
Linear and Nonlinear Waves
,
Wiley-Interscience
,
New York
.
13.
Kühne
,
R. D.
,
1984
, “
Macroscopic Freeway Model for Dense Traffic-Stop-Start Waves and Incident Detection
,”
Proceedings of the Ninth International Symposium on Transportation and Traffic Theory
, July 11–13, Vol. 9, pp.
21
42
.
14.
Aw
,
A.
, and
Rascle
,
M.
,
2000
, “
Resurrection of ‘Second Order’ Models of Traffic Flow
,”
SIAM J. Appl. Math.
,
60
(
3
), pp.
916
938
.10.1137/S0036139997332099
15.
Rascle
,
M.
,
2002
, “
An Improved Macroscopic Model of Traffic Flow: Derivation and Links With the Lighthill-Whitham Model
,”
Math. Comput. Modell.
,
35
(
5–6
), pp.
581
590
.10.1016/S0895-7177(02)80022-X
16.
Zhang
,
H. M.
,
1998
, “
A Theory of Nonequilibrium Traffic Flow
,”
Transp. Res. Part B
,
32
(
7
), pp.
485
498
.10.1016/S0191-2615(98)00014-9
17.
Jiang
,
R.
,
Wu
,
Q. S.
, and
Zhu
,
Z. J.
,
2002
, “
A New Continuum Model for Traffic Flow and Numerical Tests
,”
Transp. Res. Part B
,
36
(
5
), pp.
405
419
.10.1016/S0191-2615(01)00010-8
18.
Jin
,
Y.
, and
Meng
,
J.
,
2020
, “
Dynamical Analysis of an Optimal Velocity Model With Time-Delayed Feedback Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
90
, p.
105333
.10.1016/j.cnsns.2020.105333
19.
Jin
,
Y.
,
Meng
,
J.
, and
Xu
,
M.
,
2022
, “
Dynamical Analysis for a Car-Following Model With Delayed-Feedback Control of Both Velocity and Acceleration Differences
,”
Commun. Nonlinear Sci. Numer. Simul.
,
111
, p.
106458
.10.1016/j.cnsns.2022.106458
20.
Liang
,
Y. J.
, and
Xue
,
Y.
,
2010
, “
Study on Traffic Flow Affected by the Road Turning
,”
Acta Phys. Sin.
,
59
(
8
), pp.
5325
5331
.
21.
Cao
,
J. L.
, and
Shi
,
Z. K.
,
2015
, “
A Novel Lattice Traffc Flow Model on a Curved Road
,”
Int. J. Mod. Phys. C
,
26
(
11
), p.
1550121
.10.1142/S0129183115501211
22.
Zhou
,
J.
, and
Shi
,
Z. K.
,
2016
, “
Lattice Hydrodynamic Model for Traffic Flow on Curved Road
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1217
1236
.10.1007/s11071-015-2398-1
23.
Zhang
,
L. D.
,
Jia
,
L.
, and
Zhu
,
W. X.
,
2012
, “
Curved Road Traffic Flow Car-Following Model and Stability Snalysis
,”
Acta Phys. Sin.
,
61
(
7
), pp.
246
251
.
24.
Jin
,
Y. F.
, and
Meng
,
X.
,
2010
, “
Bifurcation Analysis of the Full Velocity Difference Model
,”
Chin. Phys. Lett.
,
27
(
4
), p.
040501
.10.1088/0256-307X/27/4/040501
25.
Li
,
T.
,
2005
, “
Nonlinear Dynamics of Traffic Jams
,”
Phys. D
,
207
(
1–2
), pp.
41
51
.10.1016/j.physd.2005.05.011
26.
Delgado
,
J.
, and
Saavedra
,
P.
,
2015
, “
Global Bifurcation Diagram for the Kerner-Konhäuser Traffic Flow Model
,”
Int. J. Bifurcation Chaos
,
25
(
5
), p.
1550064
.10.1142/S0218127415500649
27.
Lai
,
L. L.
,
Cheng
,
R. J.
,
Li
,
Z. P.
, and
Ge
,
H. X.
,
2013
, “
The KdV-Burgers Equation in a Modified Speed Gradient Continuum Model
,”
Chin. Phys. B
,
22
(
6
), p.
060511
.10.1088/1674-1056/22/6/060511
28.
Kerner
,
B. S.
, and
Konhäuser
,
P.
,
1994
, “
Structure and Parameters of Clusters in Traffic Flow
,”
Phys. Rev. E
,
50
(
1
), pp.
54
83
.10.1103/PhysRevE.50.54
29.
Cao
,
J. F.
,
Han
,
C. Z.
, and
Fang
,
Y. W.
,
2006
,
Nonlinear Systems Theory and Application
,
Xi'an Jiao Tong University Press
,
Xi'an, China
.
30.
Daganzo
,
C. F.
, and
Laval
,
J. A.
,
2005
, “
Moving Bottlenecks: A Numerical Method That Converges in Flows
,”
Transp. Res. Part B
,
39
(
9
), pp.
855
863
.10.1016/j.trb.2004.10.004
You do not currently have access to this content.