Abstract

The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined.

References

1.
Au
,
A.
, and
Kirsch
,
R.
,
2000
, “
EMG-Based Prediction of Shoulder and Elbow Kinematics in Able-Bodied and Spinal Cord Injured Individuals
,”
IEEE Trans. Rehabil. Eng.
,
8
(
4
), pp.
471
480
.10.1109/86.895950
2.
Wang
,
L.
, and
Buchanan
,
T.
,
2002
, “
Prediction of Joint Moments Using a Neural Network Model of Muscle Activations From EMG Signals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
10
(
1
), pp.
30
37
.10.1109/TNSRE.2002.1021584
3.
Koike
,
Y.
, and
Kawato
,
M.
,
1995
, “
Estimation of Dynamic Joint Torques and Trajectory Formation From Surface Electromyography Signals Using a Neural Network Model
,”
Biol. Cybern.
,
73
(
4
), pp.
291
300
.10.1007/BF00199465
4.
Su
,
H.
,
Qi
,
W.
,
Li
,
Z.
,
Chen
,
Z.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2021
, “
Deep Neural Network Approach in EMG-Based Force Estimation for Human–Robot Interaction
,”
IEEE Trans. Artif. Intell.
,
2
(
5
), pp.
404
412
.10.1109/TAI.2021.3066565
5.
Hahne
,
J. M.
,
Wilke
,
M. A.
,
Koppe
,
M.
,
Farina
,
D.
, and
Schilling
,
A. F.
,
2022
, “
Longitudinal Case Study of Regression-Based Hand Prosthesis Control in Daily Life
,”
Front. Neurosci.
,
14
, p.
600
.10.3389/fnins.2020.00600
6.
Zia Ur Rehman
,
M.
,
Gilani
,
S. O.
,
Waris
,
A.
,
Niazi
,
I. K.
,
Slabaugh
,
G.
,
Farina
,
D.
, and
Kamavuako
,
E. N.
,
2018
, “
Stacked Sparse Autoencoders for EMG-Based Classification of Hand Motions: A Comparative Multi Day Analyses Between Surface and Intramuscular EMG
,”
Appl. Sci.
,
8
(
7
), p.
1126
.10.3390/app8071126
7.
Wang
,
J.
, and
Zielińska
,
T.
,
2017
, “
Gait Features Analysis Using Artificial Neural Networks - Testing the Footwear Effect
,”
Acta Bioeng. Biomech.
,
19
(
1
), pp.
17
32
.https://pubmed.ncbi.nlm.nih.gov/28552925/
8.
Suppiah
,
R.
,
Kim
,
N.
,
Sharma
,
A.
, and
Abidi
,
K.
,
2022
, “
Fuzzy Inference System (FIS) - Long Short-TermMemory (LSTM) Network for Electromyography (EMG) Signal Analysis
,”
Biomed. Phys. Eng. Express
,
8
(
6
), p.
065032
.10.1088/2057-1976/ac9e04
9.
Tresussart
,
B.
,
Geffard
,
F.
,
Vignais
,
N.
, and
Frederic
,
M.
,
2020
, “
An EMG-Based Control of an Upper-Limb Power-Assist Exoskeloton Robot
,”
IEEE Trans. Syst. Man. Cybern. B Cybern.
pp.
9107
9113
.
10.
Tresussart
,
B.
,
Caron
,
R.
,
Geffard
,
F.
,
Marin
,
F.
, and Vignais, N.,
2021
, “
Personalizing the Control Law of an Upper-Limb Exoskeleton Using EMG Singnal
,” Cold Spring Harbor Laboratory.
11.
He
,
H.
, and
Kiguhi
,
K.
,
2007
, “
A Study on EMG-Based Control of Exoskeleton Robots for Human Lower-Limb Motion Assistant
,”
Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine
, ITAB, Tokyo, Japan, Oct. 11–Nov. 11, pp.
292
295
.
12.
Kiguch
,
K.
, and
Hayashi
,
Y.
,
2012
, “
An EMG-Based Control of an Upper-Limb Power-Assist Exoskeloton Robot
,”
IEEE Trans. Syst. Man. Cybern. B Cybern.
,
42
(
4
), pp.
1064
1071
.10.1109/TSMCB.2012.2185843
13.
Li
,
K.
,
Zhang
,
J.
,
Wang
,
L.
,
Zhang
,
M.
,
Li
,
J.
, and
Bao
,
S.
,
2020
, “
A Review of the Key Technologies for sEMG-Based Human-Robot Interaction Systems
,”
Biomed. Signal Process. Control
,
62
, p.
102074
.10.1016/j.bspc.2020.102074
14.
Gordon
,
C. C.
,
Churchill
,
T.
,
Clauser
,
C. E.
,
Bradtmiller
,
B.
, and
McConville
,
J. T.
,
1989
, “
Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics
,” Anthropology Research Project Inc., Yellow Springs, OH, Interim Report for 1988 Descriptive Note: Technical Report 1987–1988.
15.
Contini
,
R.
,
1979
, “
Body Segment Parameters. Part II
,”
Artif. Limbs.
,
16
(
1
), pp.
1
19
.
16.
Langane
,
S.
,
Aoustin
,
Y.
,
Arakalian
.,
V.
, and
Chablat
,
D.
,
2020
,
Investigation of the Stresses Exerted by an Exosuit of a Human Arm
, Advanced Technologies in Robotics and Intelligent Systems,
Springer
,
Cham
, Switzerland, pp.
425
435
.10.14569/IJACSA.2019.0100612
17.
Too
,
J.
,
Rahim
,
A.
, and
Mohd
,
N.
,
2019
, “
Classification of Hand Movements Based on Discrete Wavelet Transform and Enhanced Feature Extraction
,”
Int. J. Adv. Comput. Sci. Appl.
,
10
(
6
).
18.
Phinyomark
,
A.
,
Phukpattaranont
,
P.
, and
Limsakul
,
C.
,
2012
, “
Fractal Analysis Features for Weak and Single-Channel Upper-Limb EMG Signals
,”
Expert Syst. Appl.
,
39
(
12
), pp.
11156
11163
.10.1016/j.eswa.2012.03.039
19.
Chai
,
Y.
,
Jia
,
L.
, and
Zhang
,
Z.
,
2009
, “
Mamdani Model Based Adaptive Neural Fuzzy Inference System and Its Application in Traffic Level of Service Evaluation
,”
Sixth International Conference on Fuzzy Systems and Knowledge Discovery,
Vol.
4
, Tianjin, China, Aug. 14–16, pp.
555
559
.
20.
Mamdani
,
J. H.
, and
Assilian
,
S.
,
1975
, “
An Experiment in Liguistic Synthesis With a Fuzzy Logic Controller
,”
Int. J. Man-Mach. Stud.
,
7
(
1
), pp.
1
13
.10.1016/S0020-7373(75)80002-2
21.
Bland
,
J. M.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
22.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
, et al.,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
You do not currently have access to this content.