Abstract

This work introduced a new hand prosthesis architecture able to achieve an opposite and lateral grasp by using a single actuator. An analysis of the hand prostheses, as well as the movements classically performed in daily life and at work allows us to focus our work on these two types of grasp. A lockable passive joint is moved by the user to switch between the opposite and lateral grasp. The location of the thumb was defined thanks to 3D scans in four extreme positions. The movement of the thumb is analyzed to determine the location of the joints to be created. Then, a four-bar linkage was optimized to realize this motion with good force transmission. A sensitivity analysis was performed to evaluate the performance index variation based on design parameters.

References

1.
TASKA, “
TASKA Prosthetics
,” Canterbury, UK, accessed Mar. 8, 2023, https://www.taskaprosthetics.com
2.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review
,”
J. Rehabil. Res. Dev.
,
50
(
5
), pp.
599
618
.10.1682/JRRD.2011.10.0188
3.
Puchhammer
,
G.
,
2011
, “
Hand Prosthesis With Fingers That Can Be Aligned in an Articulated Manner
,” US Patent No. 7,867,287.
4.
Zappatore
,
G. A.
,
2020
, “
Underactuated Robotic Hand
,” US Patent No. 16/341,730.
5.
Laffranchi
,
M.
,
Boccardo
,
N.
,
Traverso
,
S.
,
Lombardi
,
L.
,
Canepa
,
M.
,
Lince
,
A.
,
Semprini
,
M.
,
Saglia
,
J. A.
,
Naceri
,
A.
,
Sacchetti
,
R.
,
Gruppioni
,
E.
, and
De Michieli
,
L.
,
2020
, “
The Hannes Hand Prosthesis Replicates the Key Biological Properties of the Human Hand
,”
Sci. Rob.
,
5
(
46
), p.
eabb0467
.10.1126/scirobotics.abb0467
6.
Leddy
,
M. T.
, and
Dollar
,
A. M.
,
2018
, “
Preliminary Design and Evaluation of a Single-Actuator Anthropomorphic Prosthetic Hand With Multiple Distinct Grasp Types
,” Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (
Biorob
), IEEE, Enschede, The Netherlands, Aug. 26–29, pp.
1062
1069
.10.1109/BIOROB.2018.8487198
7.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2013
, “
Novel Differential Mechanism Enabling Two DOF From a Single Actuator: Application to a Prosthetic Hand
,” IEEE 13th International Conference on Rehabilitation Robotics (
ICORR
), Seattle, WA, June 24–26, pp.
1
6
.10.1109/ICORR.2013.6650441
8.
Kontoudis
,
G. P.
,
Liarokapis
,
M. V.
,
Zisimatos
,
A. G.
,
Mavrogiannis
,
C. I.
, and
Kyriakopoulos
,
K. J.
,
2015
, “
Open-Source, Anthropomorphic, Underactuated Robot Hands With a Selectively Lockable Differential Mechanism: Towards Affordable Prostheses
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), IEEE, Hamburg, Germany, Sept. 28–Oct. 2, pp.
5857
5862
.10.1109/IROS.2015.7354209
9.
Xu
,
K.
,
Liu
,
H.
,
Liu
,
Z.
,
Du
,
Y.
, and
Zhu
,
X.
,
2015
, “
A Single-Actuator Prosthetic Hand Using a Continuum Differential Mechanism
,” IEEE International Conference on Robotics and Automation (
ICRA
), IEEE, Seattle, WA, Seattle, WA, May 26–30, pp.
6457
6462
.10.1109/ICRA.2015.7140106
10.
Liu
,
H.
,
Bin
,
Z.
,
Liu
,
Z.
, and
Xu
,
K.
,
2020
, “
Design of a Lightweight Single-Actuator Multi-Grasp Prosthetic Hand With Force Magnification
,”
ASME J. Mech. Rob.
,
12
(
5
), pp.
1
33
.10.1115/1.4047438
11.
Zheng
,
Y.
,
Li
,
X.
,
Tian
,
L.
, and
Li
,
G.
,
2018
, “
Design of a Low-Cost and Humanoid Myoelectric Prosthetic Hand Driven by a Single Actuator to Realize Basic Hand Functions
,” IEEE International Conference on Cyborg and Bionic Systems (
CBS
), Shenzhen, China, Oct. 25–27, pp.
603
606
.10.1109/CBS.2018.8612255
12.
Wattanasiri
,
P.
,
Tangpornprasert
,
P.
, and
Virulsri
,
C.
,
2018
, “
Design of Multi-Grip Patterns Prosthetic Hand With Single Actuator
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
6
), pp.
1188
1198
.10.1109/TNSRE.2018.2829152
13.
Eder
,
F.
,
2021
, “
Gripping Device
,” U.S. Patent No. 15/733,337.
14.
Montagnani
,
F.
,
Controzzi
,
M.
, and
Cipriani
,
C.
,
2015
, “
Is It Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
4
), pp.
600
609
.10.1109/TNSRE.2015.2398112
15.
Montagnani
,
F.
,
Controzzi
,
M.
, and
Cipriani
,
C.
,
2016
, “
Independent Long Fingers Are Not Essential for a Grasping Hand
,”
Sci. Rep.
,
6
(
1
), p.
35545
.10.1038/srep35545
16.
Butin
,
C.
,
Chablat
,
D.
,
Aoustin
,
Y.
, and
Gouaillier
,
D.
,
2022
, “
Cinématique D'une Prothèse de Main Myoélectrique Accessible Avec Actionneur Unique et Rétropulsion Passive du Pouce
,”
Congrès Français de Mécanique, Nantes, France, Aug. 29–Sept. 2
.
17.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
, “
Optimal Design of Underactuated Fingers
,”
Underactuated Robotic Hands
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
117
138
.
18.
Bullock
,
I. M.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
, “
A Hand-Centric Classification of Human and Robot Dexterous Manipulation
,”
IEEE Trans. Haptics
,
6
(
2
), pp.
129
144
.10.1109/TOH.2012.53
19.
Resnik
,
L. J.
,
Borgia
,
M. L.
,
Cancio
,
J. M.
,
Delikat
,
J.
, and
Ni
,
P.
,
2021
, “
Psychometric Evaluation of the Southampton Hand Assessment Procedure (SHAP) in a Sample of Upper Limb Prosthesis Users
,”
J. Hand Ther. Off. J. Am. Soc. Hand Ther.
, in press.10.1016/j.jht.2021.07.003
20.
Burger
,
H.
,
Giordano
,
A.
,
Mlakar
,
M.
,
Albensi
,
C.
,
Brezovar
,
D.
, and
Franchignoni
,
F.
,
2019
, “
Cross-Cultural Adaptation and Rasch Validation of the Slovene Version of the Orthotics and Prosthetics Users' Survey (OPUS) Client Satisfaction With Device (CSD) in Upper-Limb Prosthesis Users
,”
Ann. Phys. Rehabil. Med.
,
62
(
3
), pp.
168
173
.10.1016/j.rehab.2019.03.003
21.
Waldron
,
K. J.
,
Kinzel
,
G. L.
, and
Agrawal
,
S. L.
,
2016
,
Kinematics, Dynamics, and Design of Machinery
, 3rd ed.,
Wiley
, Chichester, UK.
22.
Cerruti
,
G.
,
Chablat
,
D.
,
Gouaillier
,
D.
, and
Sakka
,
S.
,
2015
, “
Design Method for an Anthropomorphic Hand Able to Gesture and Grasp
,” IEEE International Conference on Robotics and Automation (
ICRA
), IEEE, Seattle, WA, May 26–30, pp.
3660
3667
.10.1109/ICRA.2015.7139707
23.
Blais
,
F.
,
Picard
,
M.
, and
Godin
,
G.
,
2004
, “
Accurate 3D Acquisition of Freely Moving Objects
,”
Proceedings of Second International Symposium on 3D Data Processing, Visualization and Transmission
, Thessaloniki, Greece, Sept. 9, pp.
422
429
.10.1109/TDPVT.2004.1335269
24.
Cerruti
,
G.
,
2016
, “
Design and Control of a Dexterous Anthropomorphic Robotic Hand
,” Ph.D. thesis,
Ecole Centrale de Nantes
, Nantes, France.
25.
Bennis
,
F.
, and
Bhattacharjya
,
R. K.
,
2020
,
Nature-Inspired Methods for Metaheuristics Optimization: Algorithms and Applications in Science and Engineering
, Vol.
16
,
Springer
, Berlin.
26.
Butin
,
C.
,
Chablat
,
D.
,
Aoustin
,
Y.
, and
Gouaillier
,
D.
,
2023
, “
Design of a Two-Speed Load Adaptive Variable Transmission for Energetic Optimization of an Accessible Prosthetic Hand
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011003
.10.1115/1.4054273
You do not currently have access to this content.