Abstract

Practical real-time fluid dynamic air brake models for long heavy haul trains have not been reported in open literature. Based on a previous work titled “Railway Air Brake Model and Parallel Computing Scheme” in the same journal, this paper proposed upgrades to the previous model and achieved the real-time feature. The real-time contributing factors included a new brake cylinder model, a new scheme for updating characteristics, and the application of parallel computing. Results show that, for a 150-wagon train emergency brake simulation, the computing speed was improved from 5.26 times slower than real-time to 8.6 times faster than real-time. The three contributions improved the computing speed by 8.8, 1.8, and 2.9 times faster than the baseline models, respectively.

References

1.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
Metc.
,
2021
, “
Freight Train Air Brake Models
,”
Int. J. Rail Transp.
,
11
(
1
), pp.
1
49
.10.1080/23248378.2021.2006808
2.
Shabana
,
A.
,
Aboubakr
,
A.
, and
Ding
,
L.
,
2012
, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011001
.10.1115/1.4004122
3.
Bosso
,
N.
, and
Zampieri
,
N.
,
2017
, “
Long Train Simulation Using a Multibody Code
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
552
570
.10.1080/00423114.2016.1267373
4.
Wu
,
Q.
, and
Cole
,
C.
,
2015
, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064502
.10.1115/1.4029716
5.
Oprea
,
R. A.
,
Cruceanu
,
C.
, and
Spiroiu
,
M. A.
,
2013
, “
Alternative Friction Models for Braking Train Dynamics
,”
Veh. Syst. Dyn.
,
51
(
3
), pp.
460
480
.10.1080/00423114.2012.744459
6.
Nasr
,
A.
, and
Mohammadi
,
S.
,
2010
, “
The Effects of Train Brake Delay Time on in-Train Forces
,”
J. Rail Rapid Transit
,
224
(
6
), pp.
523
534
.10.1243/09544097JRRT306
7.
Cantone
,
L.
,
2011
, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability
,”
J. Rail Rapid Transit
,
225
(
1
), pp.
57
70
.10.1243/09544097JRRT347
8.
Belforte
,
P.
,
Cheli
,
F.
,
Diana
,
G.
, and
Melzi
,
S.
,
2008
, “
Numerical and Experimental Approach for the Evaluation of Severe Longitudinal Dynamics of Heavy Freight Trains
,”
Veh. Syst. Dyn.
46
(
sup1
), pp.
937
955
.10.1080/00423110802037180
9.
Pugi
,
L.
,
Malvezzi
,
M.
,
Allotta
,
B.
,
Banchi
,
L.
, and
Presciani
,
P.
,
2004
, “
A Parametric Library for the Simulation of Union Internationale Des Chemins de Fer (UIC) Pneumatic Braking System
,”
J. Rail Rapid Transit.
,
218
(
2
), pp.
117
132
.10.1243/0954409041319632
10.
Wei
,
W.
,
Hu
,
Y.
,
Wu
,
Q.
,
Zhao
,
X.
,
Zhang
,
J.
, and
Zhang
,
Y.
,
2017
, “
An Air Brake Model for Longitudinal Train Dynamics Studies
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
517
533
.10.1080/00423114.2016.1254261
11.
Malvezzi
,
M.
,
Meli
,
E.
,
Papini
,
S.
, and
Pugi
,
L.
,
2007
, “
Parametric Models of Railway Systems for Real-Time Applications
,”
Paper Presented at ECCOMAS Thematic Conference Multibody Dynamics
,
Milano, Italy
, June 25–28.
12.
Parolini
,
L.
,
Schuler
,
S.
, and
Anta
,
A.
,
2015
, “
Benchmark Problem: An Air Brake Model for Trains
,”
EPiC Ser. Comput. Sci.
,
34
, pp.
43
48
.10.29007/1bln
13.
Pogorelov
,
D.
,
Yazykov
,
V.
,
Lysikov
,
N.
,
Oztemel
,
E.
,
Arar
,
O. F.
, and
Rende
,
F. S.
,
2017
, “
Train 3D: The Technique for Inclusion of Three-Dimensional Models in Longitudinal Train Dynamics and Its Application in Derailment Studies and Train Simulators
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
583
600
.10.1080/00423114.2016.1273532
14.
Teodoro
,
Í. P.
,
Eckert
,
J. J.
,
Lopes
,
P. F.
,
Martins
,
T. S.
, and
Santos
,
A. A.
,
2020
, “
Parallel Simulation of Railway Pneumatic Brake Using openMP
,”
Int. J. Rail Transp.
,
8
(
2
), pp.
180
194
.10.1080/23248378.2019.1660239
15.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
,
Wang
,
Y.
,
Ma
,
W.
, and
Wei
,
C.
,
2017
, “
Railway Air Brake Model and Parallel Computing Scheme
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051017
.10.1115/1.4036421
16.
Stickel
,
S.
,
Schenker
,
M.
,
Dittus
,
H.
,
Unterhuber
,
P.
,
Canesi
,
S.
,
Riquier
,
V.
,
Ayuso
,
F. P.
,
Berbineau
,
M.
, and
Goikoetxea
,
J.
,
2022
, “
Technical Feasibility Analysis and Introduction Strategy of the Virtually Coupled Train Set Concept
,”
Sci Rep.
,
12
(
1
), p.
4248
.10.1038/s41598-022-08215-y
17.
Harb
,
J.
,
2019
, “
Challenges of the Autonomous Train
,” accessed Oct. 3, 2022, https://blog.irt-systemx.fr/challenges-of-the-autonomous-train/
18.
Wu
,
Q.
,
Spiryagin
,
M.
,
Cole
,
C.
, and
McSweeney
,
T.
,
2020
, “
Parallel Computing in Railway Research
,”
Int. J. Rail Transp.
,
8
(
2
), pp.
111
134
.10.1080/23248378.2018.1553115
19.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
20.
Ge
,
X.
,
Chen
,
Q.
,
Ling
,
L.
,
Zhai
,
W.
, and
Wang
,
K.
,
2022
, “
An Approach for Simulating the Air Brake System of Long Freight Trains Based on Fluid Dynamics
,”
Railway Eng. Sci.
, epub.10.1007/s40534-022-00291-0
21.
Barney
,
B.
,
2022
, “
Message Passing Interface (MPI)
,”
Lawrence Livermore National Laboratory
,
Livermore, CA
, accessed Oct. 3, 2022, https://hpc-tutorials.llnl.gov/mpi/
22.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
044502
.10.1115/1.4035484
23.
Barney
,
B.
,
2022
, “
OpenMP
,”
Lawrence Livermore National Laboratory
,
Livermore, CA
accessed Oct. 3, 2022, https://hpc-tutorials.llnl.gov/openmp/
24.
Wu
,
Q.
,
Sun
,
Y.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2018
, “
Parallel Co-Simulation Method for Railway Vehicle-Track Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
4
), p.
041004
.10.1115/1.4039310
25.
Microsoft Ignite
, 2022, “
Auto-Parallelization and Auto-Vectorization
,” accessed Oct. 3, 2022, https://learn.microsoft.com/en-us/cpp/parallel/auto-parallelization-and-auto-vectorization?view=msvc-170
26.
Pugi
,
L.
,
Malvezzi
,
M.
,
Tarasconi
,
A.
,
Palazzolo
,
A.
,
Cocci
,
G.
, and
Violani
,
M.
,
2006
, “
HiL Simulation of WSP Systems on MI-6 Test Rig
,”
Veh. Syst. Dyn.
,
44
(
supp1
), pp.
843
852
.10.1080/00423110600886937
You do not currently have access to this content.