Abstract

Dynamical systems that have a chaotic underlying structure have a sensitive dependency on the initial conditions and the values of their parameters. In this piece of work, a straightforward method for solving the synchronization issue in master–slave arrangement for a category of chaotic or hyperchaotic systems, in which perturbations are present in the parameters of the response system, is discussed. The desired control signal is bounded by the initial state when the controller is activated. There is just one control input that is used, and it is derived from Lyapunov's concept of stability. In general, it is tricky to synchronize hyperchaotic or chaotic systems with single controller, and the work turns out to be significantly more complex when the parameters of the slave system are perturbed. The feedback controller using single input that has been constructed makes certain that the state variables of the response system are in synchronization with the state variables that correspond to them in the drive system. In order to attain the desired level of synchronization, the required conditions that must be satisfied to do so have been identified utilizing Lyapunov's stability analysis in a simple manner. In addition, numerical illustrations have been provided in order to support and confirm the theoretical findings of the paper.

References

1.
Carroll
,
T. L.
, and
Pecora
,
L. M.
,
1991
, “
Synchronizing Chaotic Circuits
,”
IEEE Trans. Circuits Syst.
,
38
(
4
), pp.
453
456
.10.1109/31.75404
2.
Yang
,
N.
,
Miranowicz
,
A.
,
Liu
,
Y.-C.
,
Xia
,
K.
, and
Nori
,
F.
,
2019
, “
Chaotic Synchronization of Two Optical Cavity Modes in Optomechanical Systems
,”
Sci. Rep.
,
9
(
1
), p.
15874
.10.1038/s41598-019-51559-1
3.
Toiya
,
M.
,
González-Ochoa
,
H. O.
,
Vanag
,
V. K.
,
Fraden
,
S.
, and
Epstein
,
I. R.
,
2010
, “
Synchronization of Chemical Micro-Oscillators
,”
J. Phys. Chem. Lett.
,
1
(
8
), pp.
1241
1246
.10.1021/jz100238u
4.
Uchida
,
A.
,
Rogister
,
F.
,
García-Ojalvo
,
J.
, and
Roy
,
R.
,
2005
, “
Synchronization and Communication With Chaotic Laser Systems
,”
Prog. Opt.
,
48
, pp.
203
341
.10.1016/S0079-6638(05)48005-1
5.
Liu
,
Y.
,
Li
,
L.
, and
Feng
,
Y.
,
2016
, “
Finite-Time Synchronization for High-Dimensional Chaotic Systems and Its Application to Secure Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051028
.10.1115/1.4033686
6.
Liao
,
T.-L.
,
Chen
,
H.-C.
,
Peng
,
C.-Y.
, and
Hou
,
Y.-Y.
,
2021
, “
Chaos-Based Secure Communications in Biomedical Information Application
,”
Electronics
,
10
(
3
), p.
359
.10.3390/electronics10030359
7.
Eroglu
,
D.
,
Lamb
,
J. S. W.
, and
Pereira
,
T.
,
2017
, “
Synchronisation of Chaos and Its Applications
,”
Contemp. Phys.
,
58
(
3
), pp.
207
243
.10.1080/00107514.2017.1345844
8.
Arellano-Delgado
,
A.
,
López-Gutiérrez
,
R. M.
,
Martínez-Clark
,
R.
, and
Cruz-Hernández
,
C.
,
2018
, “
Small-World Outer Synchronization of Small-World Chaotic Networks
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
10
), p.
101008
.10.1115/1.4041032
9.
Sharma
,
B. B.
, and
Kar
,
I. N.
,
2009
, “
Contraction Theory Based Adaptive Synchronization of Chaotic Systems
,”
Chaos, Solitons Fractals
,
41
(
5
), pp.
2437
2447
.10.1016/j.chaos.2008.09.031
10.
Handa
,
H.
, and
Sharma
,
B. B.
,
2018
, “
Controller Design Scheme for Stabilization and Synchronization of a Class of Chaotic and Hyperchaotic Systems in Uncertain Environment Using SMC Approach
,”
Int. J. Dyn. Control
,
7
, pp.
256
275
.10.1007/s40435-018-0440-0
11.
Ranjan
,
R. K.
, and
Sharma
,
B. B.
,
2023
, “
Reduced-Order Observer-Based Synchronization and Output Tracking in Chain Network of a Class of Nonlinear Systems Using Contraction Framework
,”
Int. J. Dyn. Contr
ol, 11, pp.
2523
2537
.10.1007/s40435-023-01147-z
12.
Biccari
,
U.
, and
Zuazua
,
E.
,
2020
, “
A Stochastic Approach to the Synchronization of Coupled Oscillators
,”
Front. Energy Res.
,
8
, p.
115
.10.3389/fenrg.2020.00115
13.
Bai
,
E.-W.
, and
Lonngren
,
K. E.
,
1997
, “
Synchronization of Two Lorenz Systems Using Active Control
,”
Chaos, Solitons Fractals
,
8
(
1
), pp.
51
58
.10.1016/S0960-0779(96)00060-4
14.
Pallav
, and
Handa
,
H.
,
2021
, “
Active Control Synchronization of Similar and Dissimilar Chaotic Systems
,”
2021 Innovations in Power and Advanced Computing Technologies (i-PACT)
, Kuala Lumpur, Malaysia, Nov. 27–29, pp.
1
6
.10.1109/i-PACT52855.2021.9696832
15.
Pallav, and Handa
,
H.
,
2022
, “
Chaos Synchronization for a Class of Hyperchaotic Systems Using Active SMC and PI SMC: A Comparative Analysis
,”
J. Control, Autom. Electr. Syst.
,
33
(
6
), pp.
1671
1687
.10.1007/s40313-022-00960-9
16.
Su
,
H.
,
Luo
,
R.
,
Fu
,
J.
, and
Huang
,
M.
,
2021
, “
Fixed Time Control and Synchronization for Perturbed Chaotic System Via Nonsingular Terminal Sliding Mode Method
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
3
), p.
031004
.10.1115/1.4049561
17.
Yadav
,
N.
,
Handa
,
H.
, and
Pallav
,
2023
, “
Projective Synchronization for a New Class of Chaotic/Hyperchaotic Systems With and Without Parametric Uncertainty
,”
Trans. Inst. Meas. Control
,
45
(
10
), pp.
1975
1985
.10.1177/01423312221150294
18.
Handa
,
H.
, and
Pallav
,
2022
, “
Simple Synchronization Scheme for a Class of Nonlinear Chaotic Systems Using a Single Input Control
,”
IETE J. Res.
, epub.10.1080/03772063.2022.2083028
19.
Ji
,
D. H.
,
Park
,
J. H.
, and
Won
,
S. C.
,
2009
, “
Master-Slave Synchronization of Lur'e Systems With Sector and Slope Restricted Nonlinearities
,”
Phys. Lett. A
,
373
(
11
), pp.
1044
1050
.10.1016/j.physleta.2009.01.038
20.
Yin
,
C.
,
Zhong
,
S.-M.
, and
Chen
,
W.-F.
,
2011
, “
Design PD Controller for Master–Slave Synchronization of Chaotic Lur'e Systems With Sector and Slope Restricted Nonlinearities
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1632
1639
.10.1016/j.cnsns.2010.05.031
21.
Guo
,
S. M.
,
Liu
,
K. T.
,
Tsai
,
J. S. H.
, and
Shieh
,
L. S.
,
2008
, “
An Observer-Based Tracker for Hybrid Interval Chaotic Systems With Saturating Inputs: The Chaos-Evolutionary-Programming Approach
,”
Comput. Math. Appl.
,
55
(
6
), pp.
1225
1249
.10.1016/j.camwa.2007.06.024
22.
Fuh
,
C.-C.
,
2009
, “
Optimal Control of Chaotic Systems With Input Saturation Using an Input-State Linearization Scheme
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
8
), pp.
3424
3431
.10.1016/j.cnsns.2008.12.006
23.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2018
, “
Robust Adaptive Synchronization of Chaotic Systems With Nonsymmetric Input Saturation Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011005
.10.1115/1.4037672
24.
Rehan
,
M.
,
Ahmed
,
A.
, and
Iqbal
,
N.
,
2010
, “
Static and Low Order Anti-Windup Synthesis for Cascade Control Systems With Actuator Saturation: An Application to Temperature-Based Process Control
,”
ISA Trans.
,
49
(
3
), pp.
293
301
.10.1016/j.isatra.2010.03.003
25.
Tarbouriech
,
S.
,
Prieur
,
C.
, and
Gomes Da Silva
,
J. M.
,
2006
, “
Stability Analysis and Stabilization of Systems Presenting Nested Saturations
,”
IEEE Trans. Autom. Control
,
51
(
8
), pp.
1364
1371
.10.1109/TAC.2006.878743
26.
Yau
,
H.-T.
, and
Chen
,
C.-L.
,
2007
, “
Chaos Control of Lorenz Systems Using Adaptive Controller With Input Saturation
,”
Chaos, Solitons Fractals
,
34
(
5
), pp.
1567
1574
.10.1016/j.chaos.2006.04.048
27.
Sanchez
,
E. N.
, and
Ricalde
,
L. J.
,
2003
, “
Chaos Control and Synchronization, With Input Saturation, Via Recurrent Neural Networks
,”
Neural Networks
,
16
(
5–6
), pp.
711
717
.10.1016/S0893-6080(03)00122-9
28.
Iqbal
,
M.
,
Rehan
,
M.
,
Hong
,
K.-S.
, and
Khaliq
,
A.
,
2015
, “
Sector-Condition-Based Results for Adaptive Control and Synchronization of Chaotic Systems Under Input Saturation
,”
Chaos, Solitons Fractals
,
77
, pp.
158
169
.10.1016/j.chaos.2015.05.021
29.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2018
, “
Observer-Based Synchronization of Uncertain Chaotic Systems Subject to Input Saturation
,”
Trans. Inst. Meas. Control
,
40
(
8
), pp.
2526
2535
.10.1177/0142331217705435
30.
Zhu
,
X.
, and
Li
,
D.
,
2021
, “
Robust Attitude Control of a 3-DOF Helicopter Considering Actuator Saturation
,”
Mech. Syst. Signal Process.
,
149
, p.
107209
.10.1016/j.ymssp.2020.107209
31.
Zhang
,
J.
, and
Raïssi
,
T.
,
2019
, “
Saturation Control of Switched Nonlinear Systems
,”
Nonlinear Anal.: Hybrid Syst.
,
32
, pp.
320
336
.10.1016/j.nahs.2019.01.005
32.
Yong
,
K.
,
Chen
,
M.
,
Shi
,
Y.
, and
Wu
,
Q.
,
2020
, “
Flexible Performance-Based Robust Control for a Class of Nonlinear Systems With Input Saturation
,”
Automatica
,
122
, p.
109268
.10.1016/j.automatica.2020.109268
33.
Azar
,
A. T.
,
Serrano
,
F. E.
,
Zhu
,
Q.
,
Bettayeb
,
M.
,
Fusco
,
G.
,
Na
,
J.
,
Zhang
,
W.
, and
Kamal
,
N. A.
,
2021
, “
Robust Stabilization and Synchronization of a Novel Chaotic System With Input Saturation Constraints
,”
Entropy
,
23
(
9
), p.
1110
.10.3390/e23091110
34.
Khamsuwan
,
P.
,
Sangpet
,
T.
, and
Kuntanapreeda
,
S.
,
2018
, “
Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
9
), p.
090903
.10.1115/1.4039681
35.
Ha
,
S.
,
Liu
,
H.
,
Li
,
S.
, and
Liu
,
A.
,
2019
, “
Backstepping-Based Adaptive Fuzzy Synchronization Control for a Class of Fractional-Order Chaotic Systems With Input Saturation
,”
Int. J. Fuzzy Syst.
,
21
(
5
), pp.
1571
1584
.10.1007/s40815-019-00663-5
36.
Fedele
,
G.
,
Ferrise
,
A.
, and
Chiaravalloti
,
F.
,
2016
, “
Uncertain Master–Slave Synchronization With Implicit Minimum Saturation Level
,”
Appl. Math. Modell.
,
40
(
2
), pp.
1193
1198
.10.1016/j.apm.2015.07.010
37.
Takhi
,
H.
,
Kemih
,
K.
,
Moysis
,
L.
, and
Volos
,
C.
,
2020
, “
Passivity Based Control and Synchronization of Perturbed Uncertain Chaotic Systems and Their Microcontroller Implementation
,”
Int. J. Dyn. Control
,
8
(
3
), pp.
973
990
.10.1007/s40435-020-00618-x
You do not currently have access to this content.