Abstract

A model-based methodology for the estimation of both lateral and vertical track irregularities is presented. This methodology, based on Kalman filter techniques, was developed for an independent and compact measuring system comprising an instrumented axle equipped with a limited set of low-cost sensors: a 3D gyroscope, a linear variable differential transformer (LVDT) distance sensor, and an encoder. The instrumented axle can be used on any railway vehicle traveling at moderate forward speed to provide measurements in real-time. The proposed methodology, combined with the instrumented axle, enables precise and prompt measurement of track irregularities. An experimental campaign carried out on a 1:10 scale track facility at the University of Seville validated both the system and the methodology. In the testing, 80 m of scaled track was measured at an operational speed of V =0.65 m/s in just 2 min. Simulation estimates for track irregularities compared against the measured data from the testing showed a good performance of the proposed methodology, with maximum errors of 0.45 mm in the short wavelength range D1, the range most influential to vehicle dynamic behavior.

References

1.
CEN European Committee for Standardization
,
2009
, “
Railway Applications-Track-Track Geometry Quality
,” CEN European Committee for Standardization, Brussels, Belgium, Standard No. IS EN
13848
5
.
2.
Sanchez
,
A.
,
Bravo
,
J. L.
, and
Gonzalez
,
A.
,
2017
, “
Estimating the Accuracy of Track-Surveying Trolley Measurements for Railway Maintenance Planning
,”
J. Surv. Eng.
,
143
(
1
), p.
05016008
.10.1061/(ASCE)SU.1943-5428.0000197
3.
Akpinar
,
B.
, and
Gulal
,
E.
,
2012
, “
Multisensor Railway Track Geometry Surveying System
,”
IEEE Trans. Instrum. Meas.
,
61
(
1
), pp.
190
197
.10.1109/TIM.2011.2159417
4.
Grassie
,
S. L.
,
1996
, “
Measurement of Railhead Longitudinal Profiles: A Comparison of Different Techniques
,”
Wear
,
191
(
1
), pp.
245
251
.10.1016/0043-1648(95)06732-9
5.
Baier
,
M.
,
Rulka
,
W.
, and
Abel
,
D.
,
2009
, “
Model Based Measurement of Railway Track Irregularities
,”
IFAC Proc. Vol.
,
42
(
15
), pp.
257
262
.10.3182/20090902-3-US-2007.0013
6.
Weston
,
P.
,
Roberts
,
C.
,
Yeo
,
G.
, and
Stewart
,
E.
,
2015
, “
Perspectives on Railway Track Geometry Condition Monitoring From In-Service Railway Vehicles
,”
Veh. Syst. Dyn.
,
53
, pp.
1063
1091
.10.1080/00423114.2015.1034730
7.
Ward
,
C.
,
Weston
,
P.
,
Stewart
,
E.
,
Li
,
H.
,
Goodall
,
R.
,
Roberts
,
C.
,
Mei
,
T.
,
Charles
,
G.
, and
Dixon
,
R.
,
2011
, “
Condition Monitoring Opportunities Using Vehicle-Based Sensors
,”
Proc. Inst. Mech. Eng., Part F
,
225
(
2
), pp.
202
218
.10.1177/09544097JRRT406
8.
Molodova
,
M.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2011
, “
Axle Box Acceleration: Measurement and Simulation for Detection of Short Track Defects
,”
Wear
,
271
(
5
), pp.
349
356
.10.1016/j.wear.2010.10.003
9.
OBrien
,
E. J.
,
Quirke
,
P.
,
Bowe
,
C.
, and
Cantero
,
D.
,
2018
, “
Determination of Railway Track Longitudinal Profile Using Measured Inertial Response of an In-Service Railway Vehicle
,”
Struct. Health Monit.
,
17
(
6
), pp.
1425
1440
.10.1177/1475921717744479
10.
La Paglia
,
I.
,
Carnevale
,
M.
,
Corradi
,
R.
,
Di Gialleonardo
,
E.
,
Facchinetti
,
A.
, and
Lisi
,
S.
,
2023
, “
Condition Monitoring of Vertical Track Alignment by Bogie Acceleration Measurements on Commercial High-Speed Vehicles
,”
Mech. Syst. Signal Process.
,
186
, p.
109869
.10.1016/j.ymssp.2022.109869
11.
Weston
,
P.
,
Ling
,
C. S.
,
Roberts
,
C.
,
Goodman
,
C. J.
,
Li
,
P.
, and
Goodall
,
R. M.
,
2007
, “
Monitoring Vertical Track Irregularity From In-Service Railway Vehicles
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
1
), pp.
75
88
.10.1243/0954409JRRT65
12.
Weston
,
P.
,
Ling
,
C. S.
,
Goodman
,
C. J.
,
Roberts
,
C.
,
Li
,
P.
, and
Goodall
,
R. M.
,
2007
, “
Monitoring Lateral Track Irregularity From In-Service Railway Vehicles
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
1
), pp.
89
100
.10.1243/0954409JRRT64
13.
Tsunashima
,
H.
,
Naganuma
,
Y.
, and
Kobayashi
,
T.
,
2014
, “
Track Geometry Estimation From Car-Body Vibration
,”
Veh. Syst. Dyn.
,
52
(
Suppl. 1
), pp.
207
219
.10.1080/00423114.2014.889836
14.
Lee
,
J. S.
,
Choi
,
S.
,
Kim
,
S.-S.
,
Park
,
C.
, and
Kim
,
Y. G.
,
2012
, “
A Mixed Filtering Approach for Track Condition Monitoring Using Accelerometers on the Axle Box and Bogie
,”
IEEE Trans. Instrum. Meas.
,
61
(
03
), pp.
749
758
.10.1109/TIM.2011.2170377
15.
De Rosa
,
A.
,
Alfi
,
S.
, and
Bruni
,
S.
,
2019
, “
Estimation of Lateral and Cross Alignment in a Railway Track Based on Vehicle Dynamics Measurements
,”
Mech. Syst. Signal Process.
,
116
, pp.
606
623
.10.1016/j.ymssp.2018.06.041
16.
Muñoz
,
S.
,
Ros
,
J.
,
Urda
,
P.
, and
Escalona
,
J. L.
,
2021
, “
Estimation of Lateral Track Irregularity Using a Kalman Filter. Experimental Validation
,”
J. Sound Vib.
,
504
, p.
116122
.10.1016/j.jsv.2021.116122
17.
Liao
,
Y.
,
Han
,
L.
,
Wang
,
H.
, and
Zhang
,
H.
,
2022
, “
Prediction Models for Railway Track Geometry Degradation Using Machine Learning Methods: A Review
,”
Sensors
,
22
(
19
), p.
7275
.10.3390/s22197275
18.
Muñoz
,
S.
,
Urda
,
P.
, and
Escalona
,
J. L.
,
2022
, “
Experimental Measurement of Track Irregularities Using a Scaled Track Recording Vehicle and Kalman Filtering Techniques
,”
Mech. Syst. Signal Process.
,
169
, p.
108625
.10.1016/j.ymssp.2021.108625
19.
Escalona
,
J. L.
,
Urda
,
P.
, and
Muñoz
,
S.
,
2021
, “
A Track Geometry Measuring System Based on Multibody Kinematics, Inertial Sensors and Computer Vision
,”
Sensors
,
21
(
3
), p.
683
.10.3390/s21030683
20.
Brown
,
R.
, and
Hwang
,
P.
,
2012
,
Introduction to Random Signals and Applied Kalman Filtering With Matlab Exercises
,
Wiley
,
New York
.
21.
Urda
,
P.
,
Muñoz
,
S.
,
Aceituno
,
J. F.
, and
Escalona
,
J. L.
,
2020
, “
Application and Experimental Validation of a Multibody Model With Weakly Coupled Lateral and Vertical Dynamics to a Scaled Railway Vehicle
,”
Sensors
,
20
(
13
), p.
3700
.10.3390/s20133700
22.
Urda
,
P.
,
Aceituno
,
J. F.
,
Muñoz
,
S.
, and
Escalona
,
J. L.
,
2021
, “
Measurement of Railroad Track Irregularities Using an Automated Recording Vehicle
,”
Measurement
,
183
, p.
109765
.10.1016/j.measurement.2021.109765
23.
Aceituno
,
J. F.
,
Chamorro
,
R.
,
Muñoz
,
S.
, and
Escalona
,
J. L.
,
2019
, “
An Alternative Procedure to Measure Railroad Track Irregularities. Application to a Scaled Track
,”
Measurement
,
137
, pp.
417
427
.10.1016/j.measurement.2019.01.025
24.
Aceituno
,
J. F.
,
Chamorro
,
R.
,
García-Vallejo
,
D.
, and
Escalona
,
J. L.
,
2017
, “
On the Design of a Scaled Railroad Vehicle for the Validation of Computational Models
,”
Mech. Mach. Theory
,
115
, pp.
60
76
.10.1016/j.mechmachtheory.2017.04.015
25.
González-Carbajal
,
J.
,
Urda
,
P.
,
Muñoz
,
S.
, and
Escalona
,
J. L.
,
2023
, “
Estimation of the Trajectory and Attitude of Railway Vehicles Using Inertial Sensors With Application to Track Geometry Measurement
,”
Veh. Syst. Dyn.
, epub, pp.
1
27
.10.1080/00423114.2023.2203865
You do not currently have access to this content.