Abstract

In this work, we examine the nonlinear dynamics of an inverted pendulum between lateral rebounding barriers. We continue the numerical investigation started in (Demeio et al., 2006, “Response Scenario and Non-Smooth Features in the Nonlinear Dynamics of an Impacting Inverted Pendulum,” ASME J. Comput. Nonlin. Dyn., 1(1), pp. 56–64) by adding the contribution of the second harmonic in the external forcing term. We investigate the behavior of the periodic attractors by bifurcation diagrams with respect to each amplitude and by behavior charts of single attractors in the amplitude parameters plane for fixed frequency. We study the effects of the second harmonic term on the existence domain of each attractor, on local bifurcations, and on the changes in the basins of attraction. The behavior of some robust chaotic attractor is also considered. In the evolution of the periodic attractors we have observed that the addition of the second harmonic generates a rich variety of behaviors, such as loss of stability and formation of isolas of periodic orbits. In the case of chaotic attractors, we have studied one attractor at high frequency, ω = 18, and one at low frequency, ω = 3. In the high frequency case we detect a transition from a scattered to a confined attractor, whereas at the lower frequency the chaotic attractor is present over a wide range of the second harmonic's amplitude. Finally, we extend the investigation of the chaotic attractors by bifurcation diagrams with respect to the frequency.

References

1.
Lu
,
Z.
,
Wang
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2018
, “
Particle Impact Dampers: Past, Present, and Future
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2058
.10.1002/stc.2058
2.
Hartog
,
J. P. D.
,
1985
,
Mechanical Vibrations
,
Dover Publications
,
New York
.
3.
Ema
,
S.
, and
Marui
,
E.
,
1994
, “
A Fundamental Study on Impact Dampers
,”
Int. J. Mach. Tools Manuf.
,
34
(
3
), pp.
407
421
.10.1016/0890-6955(94)90009-4
4.
Snoun
,
C.
, and
Trigui
,
M.
,
2018
, “
Design Parameters Optimization of a Particles Impact Damper
,”
Int. J. Interact. Des. Manuf.
,
12
(
4
), pp.
1283
1297
.10.1007/s12008-018-0463-y
5.
Du
,
Y.
, and
Wang
,
S.
,
2010
, “
Modeling the Fine Particle Impact Damper
,”
Int. J. Mech. Sci.
,
52
(
7
), pp.
1015
1022
.10.1016/j.ijmecsci.2010.04.004
6.
Collette
,
F. S.
,
1998
, “
A Combined Tuned Absorber and Pendulum Impact Damper Under Random Excitation
,”
J. Sound Vib.
,
216
(
2
), pp.
199
213
.10.1006/jsvi.1997.1666
7.
Li
,
K.
, and
Darby
,
A. P.
,
2008
, “
A Buffered Impact Damper for Multi-Degree-of-Freedom Structural Control
,”
Earthquake Engng. Struct. Dyn.
,
37
(
13
), pp.
1491
1510
.10.1002/eqe.823
8.
Chua
,
G. S.
,
Pacheco
,
B. M.
,
Fujino
,
Y.
, and
Ito
,
M.
,
1990
, “
Classical Impact Damper and Pendulum Impact Damper for Potential Civil Engineering Application
,”
Doboku Gakkai Ronbunshu
, 416, pp. 113–124.10.2208/jscej.1990.416_113
9.
Żurawski
,
M.
, and
Zalewski
,
R.
,
2020
, “
Damping of Beam Vibrations Using Tuned Particles Impact Damper
,”
Appl. Sci.
,
10
(
18
), p.
6334
.10.3390/app10186334
10.
Jin
,
J.
,
Yang
,
W.
,
Koh
,
H. I.
, and
Park
,
J.
,
2020
, “
Development of Tuned Particle Impact Damper for Reduction of Transient Railway Vibrations
,”
Appl. Acoust.
,
169
, p.
107487
.10.1016/j.apacoust.2020.107487
11.
Ibrahim
,
R. A.
, ed.,
2009
,
Vibro-Impact Dynamics
, 1st ed., Vol.
43
of Lecture Notes in Applied and Computational Mechanics,
Springer-Verlag
,
Berlin, Heidelberg
, Impact Dampers 8, pp.
217
232
.
12.
Demeio
,
L.
,
Lenci
,
S.
, and
Petrini
,
M.
,
2006
, “
Response Scenario and Non-Smooth Features in the Nonlinear Dynamics of an Impacting Inverted Pendulum
,”
ASME J. Comput. Nonlin. Dyn.
,
1
(
1
), pp.
56
64
.10.1115/1.1944734
13.
Lenci
,
S.
, and
Rega
,
G.
,
1998
, “
A Procedure for Reducing the Chaotic Response Region in an Impact Mechanical System
,”
Nonlinear Dyn.
,
15
(
4
), pp.
391
409
.10.1023/A:1008209513877
14.
Lenci
,
S.
, and
Rega
,
G.
,
1998
, “
Controlling Nonlinear Dynamics in a Two-Well Impact System. Parts I & II
,”
Int. J. Bif. Chaos
,
8
(
12
), pp.
2387
2407
.10.1142/S0218127498001911
15.
Peterka
,
F.
,
1996
, “
Bifurcations and Transition Phenomena in an Impact Oscillator
,”
Chaos, Sol. Fractals
,
7
(
10
), pp.
1635
1647
.10.1016/S0960-0779(96)00028-8
16.
Gao
,
J.
, and
Du
,
Z.
,
2015
, “
Homoclinic Bifurcation in a Quasiperiodically Excited Impact Inverted Pendulum
,”
Nonlinear Dyn
,
79
(
2
), pp.
1061
1074
.10.1007/s11071-014-1723-4
17.
Barthod
,
M.
,
Hayne
,
B.
,
Tebec
,
J.-L.
, and
Pin
,
J.-C.
,
2007
, “
Experimental Study of Dynamic and Noise Produced by a Gearing Excited by a Multi-Harmonic Excitation
,”
Appl. Acoust.
,
68
(
9
), pp.
982
1002
.10.1016/j.apacoust.2006.04.012
18.
Raman
,
A.
,
Trigueros
,
S.
,
Cartagena
,
A.
,
Stevenson
,
A. P. Z.
,
Susilo
,
M.
,
Nauman
,
E.
, and
Contera
,
S. A.
,
2011
, “
Mapping Nanomechanical Properties of Live Cells Using Multi-Harmonic Atomic Force Microscopy
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
809
814
.10.1038/nnano.2011.186
19.
Jaber
,
N.
,
Ramini
,
A.
, and
Younis
,
M. I.
,
2016
, “
Multifrequency Excitation of a Clamped-Clamped Microbeam: Analytical and Experimental Investigation
,”
Microsystems Nanoeng.
,
2
(
1
), p. 16002.10.1038/micronano.2016.2
20.
Facci
,
A. L.
, and
Porfiri
,
M.
,
2012
, “
Nonlinear Hydrodynamic Damping of Sharp-Edged Cantilevers in Viscous Fluids Undergoing Multi-Harmonic Base Excitation
,”
J. Appl. Phys.
,
112
(
12
), p. 124908.10.1063/1.4769307
21.
Breslavsky
,
I. D.
, and
Amabili
,
M.
,
2018
, “
Nonlinear Vibrations of a Circular Cylindrical Shell With Multiple Internal Resonances Under Multi-Harmonic Excitation
,”
Nonlinear Dyn.
,
93
(
1
), pp.
53
62
.10.1007/s11071-017-3983-2
22.
Chen
,
Y.
,
Yaghoubi
,
V.
,
Linderholt
,
A.
, and
Abrahamsson
,
T. J. S.
,
2016
, “
Informative Data for Model Calibration of Locally Nonlinear Structures Based on Multi-Harmonic Frequency Responses
,”
ASME J. Comput. Nonlin. Dyn.
,
11
(
5
), p.
051033
.10.1115/1.4033608
23.
Chen
,
Y.
,
Linderholt
,
A.
, and
Abrahamsson
,
T. J. S.
,
2017
, “
Experimental Validation of a Nonlinear Model Calibration Method Based on Multiharmonic Frequency Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041027
.10.1115/1.4035670
24.
Sahoo
,
B.
,
Panda
,
L. N.
, and
Pohit
,
G.
,
2015
, “
Two-Frequency Parametric Excitation and Internal Resonance of a Moving Viscoelastic Beam
,”
Nonlinear Dyn.
,
82
(
4
), pp.
1721
1742
.10.1007/s11071-015-2272-1
25.
EL-Bassiouny
,
A. F.
,
2005
, “
Principal Parametric Resonances of Non-Linear Mechanical System With Two-Frequency and Self-Excitations
,”
Mech. Res. Commun.
,
32
(
3
), pp.
337
350
.10.1016/j.mechrescom.2004.10.013
26.
Rega
,
G.
,
2004
, “
Nonlinear Vibrations of Suspended cables - Part II: Deterministic Phenomena
,”
ASME Appl. Mech. Rev.
,
57
(
6
), pp.
479
514
.10.1115/1.1777225
27.
Heinze
,
T.
,
von Scheidt
,
L. P.
, and
Wallaschek
,
J.
,
2020
, “
Global Detection of Detached Periodic Solution Branches of Friction-Damped Mechanical Systems
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1841
1870
.10.1007/s11071-019-05425-4
You do not currently have access to this content.