Abstract

In this theoretical study, the vibration suppression, energy transfer, and bifurcation characteristics, as a function of dimensionless parameters, are investigated for an inerter-based pendulum vibration absorber (IPVA) attached to a linear single-degree-of-freedom spring-mass-damper system (primary structure), subject to white noise excitation. A perturbation method is introduced to detect and track the bifurcation points of the system. It is shown that the marginal probability density function of the pendulum angular displacement undergoes a P-bifurcation at critical parameter values, transitioning from monomodality to bi-modality. A cumulant-neglect technique is used to predict the mean squares of the system, which are compared to the response of a linear system without the IPVA to quantify the vibration suppression. It is shown that the IPVA leads to effective vibration mitigation of the structure in the neighborhood of the P-bifurcation, which is achieved by transferring the kinetic energy of the structure to the pendulum. The results are validated by a Monte Carlo simulation that is used to numerically approximate the marginal probability density function for the pendulum angle as well as the mean squares.

References

1.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Annu. Rev. Control Rob. Auton. Syst.
,
3
(
1
), pp.
361
391
.10.1146/annurev-control-053018-023917
2.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.10.1002/eqe.1138
3.
Wang
,
F.-C.
,
Liao
,
M.-K.
,
Liao
,
B.-H.
,
Su
,
W.-J.
, and
Chan
,
H.-A.
,
2009
, “
The Performance Improvements of Train Suspension Systems With Mechanical Networks Employing Inerters
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
805
830
.10.1080/00423110802385951
4.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
5.
Hu
,
Y.
, and
Chen
,
M. Z.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.10.1016/j.ijmecsci.2015.06.003
6.
Joubaneh
,
E. F.
, and
Barry
,
O. R.
,
2019
, “
On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization
,”
ASME J. Vib. Acoust.
,
141
(
6
), p. 061007.10.1115/1.4044303
7.
Tai
,
W.-C.
,
2020
, “
Optimum Design of a New Tuned Inerter-Torsional-Mass-Damper Passive Vibration Control for Stochastically Motion-Excited Structures
,”
ASME J. Vib. Acoust.
,
142
(
1
), p. 011015.10.1115/1.4045264
8.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
,
1972
, “
The Autoparametric Vibration Absorber
,” J. Manuf. Sci. Eng., 94(1), pp.
119
125
.
9.
Hatwal
,
H.
,
Mallik
,
A.
, and
Ghosh
,
A.
,
1982
, “
Non-Linear Vibrations of a Harmonically Excited Autoparametric System
,”
J. Sound Vib.
,
81
(
2
), pp.
153
164
.10.1016/0022-460X(82)90201-2
10.
Song
,
Y.
,
Sato
,
H.
,
Iwata
,
Y.
, and
Komatsuzaki
,
T.
,
2003
, “
The Response of a Dynamic Vibration Absorber System With a Parametrically Excited Pendulum
,”
J. Sound Vib.
,
259
(
4
), pp.
747
759
.10.1006/jsvi.2002.5112
11.
Warminski
,
J.
, and
Kecik
,
K.
,
2009
, “
Instabilities in the Main Parametric Resonance Area of a Mechanical System With a Pendulum
,”
J. Sound Vib.
,
322
(
3
), pp.
612
628
.10.1016/j.jsv.2008.06.042
12.
Ibrahim
,
R. A.
, and
Roberts
,
J. W.
,
1976
, “
Broad Band Random Excitation of a Two-Degree-of-Freedom System With Autoparametric Coupling
,”
J. Sound Vib.
,
44
(
3
), pp.
335
348
.10.1016/0022-460X(76)90506-X
13.
Ibrahim
,
R.
, and
Heo
,
H.
,
1986
, “
Autoparametric Vibration of Coupled Beams Under Random Support Motion
,” J. Vib. Acoust., 108(4), pp.
421
426
.
14.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2015
, “
Energy Harvesting From an Autoparametric Vibration Absorber
,”
Smart Mater. Struct.
,
24
(
11
), p.
115012
.10.1088/0964-1726/24/11/115012
15.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2017
, “
Nonlinear Performances of an Autoparametric Vibration-Based Piezoelastic Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
2
), pp.
254
271
.10.1177/1045389X16649450
16.
Kecik
,
K.
,
2018
, “
Assessment of Energy Harvesting and Vibration Mitigation of a Pendulum Dynamic Absorber
,”
Mech. Syst. Signal Process.
,
106
, pp.
198
209
.10.1016/j.ymssp.2017.12.028
17.
Felix
,
J. L. P.
,
Balthazar
,
J. M.
,
Rocha
,
R. T.
,
Tusset
,
A. M.
, and
Janzen
,
F. C.
,
2018
, “
On Vibration Mitigation and Energy Harvesting of a Non-Ideal System With Autoparametric Vibration Absorber System
,”
Meccanica
,
53
(
13
), pp.
3177
3188
.10.1007/s11012-018-0881-8
18.
Tan
,
T.
,
Yan
,
Z.
,
Zou
,
Y.
, and
Zhang
,
W.
,
2019
, “
Optimal Dual-Functional Design for a Piezoelectric Autoparametric Vibration Absorber
,”
Mech. Syst. Signal Process.
,
123
, pp.
513
532
.10.1016/j.ymssp.2019.01.004
19.
Han
,
Q.
,
Xu
,
W.
, and
Sun
,
J.-Q.
,
2016
, “
Stochastic Response and Bifurcation of Periodically Driven Nonlinear Oscillators by the Generalized Cell Mapping Method
,”
Phys. A: Stat. Mech. Appl.
,
458
, pp.
115
125
.10.1016/j.physa.2016.04.006
20.
Wei
,
W.
,
Xu
,
W.
, and
Liu
,
J.
,
2021
, “
Stochastic p-Bifurcation Analysis of a Class of Nonlinear Markov Jump Systems Under Combined Harmonic and Random Excitations
,”
Phys. A: Stat. Mech. Appl.
,
582
, p.
126246
.10.1016/j.physa.2021.126246
21.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
22.
Sharif-Bakhtiar
,
M.
, and
Shaw
,
S.
,
1992
, “
Effects of Nonlinearities and Damping on the Dynamic Response of a Centrifugal Pendulum Vibration Absorber
,” J. Vib. Acoust., 114(3), pp.
305
311
.
23.
Huang
,
Z.
,
Zhu
,
W.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Non-Linear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound Vib.
,
238
(
2
), pp.
233
256
.10.1006/jsvi.2000.3083
24.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
, “
Random Vibration of Mechanical and Structural Systems
,”
NASA STI/Recon Tech. Rep. A
,
93
, p.
14690
.https://ui.adsabs.harvard.edu/abs/1993STIA...9314690S%2F/abstract
25.
Namachchivaya
,
N. S.
,
1990
, “
Stochastic Bifurcation
,”
Appl. Math. Comput.
,
38
(
2
), pp.
101
159
.10.1016/0096-3003(90)90051-4
26.
Bover
,
D.
,
1978
, “
Moment Equation Methods for Nonlinear Stochastic Systems
,”
J. Math. Anal. Appl.
,
65
(
2
), pp.
306
320
.10.1016/0022-247X(78)90182-8
27.
Higgins
,
B. G.
, and
Binous
,
H.
,
2010
, “
A Simple Method for Tracking Turning Points in Parameter Space
,”
J. Chem. Eng. Jpn.
,
43
(
12
), pp.
1035
1042
.10.1252/jcej.10we122
28.
Sun
,
J.-Q.
, and
Hsu
,
C.
,
1987
, “
Cumulant-neglect closure method for nonlinear systems under random excitations
,” J. Appl. Mech., 54(3), pp.
649
655
.
29.
Wojtkiewicz
,
S.
,
Spencer
,
B.
, Jr.
, and
Bergman
,
L.
,
1996
, “
On the Cumulant-Neglect Closure Method in Stochastic Dynamics
,”
Int. J. Non-Linear Mech.
,
31
(
5
), pp.
657
684
.10.1016/0020-7462(96)00029-7
30.
Kecik
,
K.
, and
Borowiec
,
M.
,
2013
, “
An Autoparametric Energy Harvester
,”
Eur. Phys. J. Spec. Top.
,
222
(
7
), pp.
1597
1605
.10.1140/epjst/e2013-01948-2
31.
Kim
,
S.-S.
, and
Okada
,
Y.
,
2002
, “
Variable Resistance Type Energy Regenerative Damper Using Pulse Width Modulated Step-Up Chopper
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
110
115
.10.1115/1.1419204
You do not currently have access to this content.