Abstract

Fluid flow between nonparallel planes has been studied by different authors. Previously, this type of problem has been investigated by considering pure fluid or nanofluid in the constructed channel to find the velocity profile. These are generally known as forward problems. The inverse problem is to compute values of unknown parameters when velocity and remaining parameters may be known. Most of the studies related to the forward problems are reported in a crisp environment. But involved parameters may also be considered as uncertain parameters. In this regard, this article aims to study forward and inverse problems related to nanofluid flow by taking volume fraction as an uncertain parameter in terms of fuzzy number. Here, we have applied the homotopy perturbation method to handle governing differential equation for the considered problem. Firstly, the velocity profile has been computed through various order approximations. Further, the velocity profile is assumed as known, and taking fuzzy volume fraction as an unknown parameter, we have studied the inverse case. Convergence of the obtained results for both forward and inverse cases is also included. The novelty of this research is that if velocity is known to us from some experiments, then targeted unknown parameters may be calculated using the discussed procedure.

References

1.
Jeffery
,
G. B.
,
1915
, “
L. The Two-Dimensional Steady Motion of a Viscous Fluid
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
29
(
172
), pp.
455
465
.10.1080/14786440408635327
2.
Hamel
,
G.
,
1917
, “
Spiralförmige Bewegungen Zäher Flüssigkeiten
,”
Jahresber. Deut. Math. Ver.
,
25
, pp.
34
60
.http://eudml.org/doc/145468
3.
Al-Saif
,
A. S. J. A.
, and
Jasim
,
A. M.
,
2019
, “
Analytical Investigation of the MHD Jeffery-Hamel Flow Through Convergent and Divergent Channel by New Scheme
,”
Eng. Lett.
,
27
(
3
), pp.
646
657
.http://www.engineeringletters.com/issues_v27/issue_3/EL_27_3_28.pdf
4.
Singh
, J.,
Rashidi
,
M. M.
,
Kumar
,
S.
, and
Kumar
,
D.
,
2019
, “
A Hybrid Computational Approach for Jeffery–Hamel Flow in Non-Parallel Walls
,”
Neural Comput. Appl.
,
31
(
7
), pp.
2407
2413
.10.1007/s00521-017-3198-y
5.
Patel
,
H. S.
, and
Meher
,
R.
,
2018
, “
Analytical Investigation of Jeffery–Hamel Flow by Modified Adomian Decomposition Method
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
599
606
.10.1016/j.asej.2016.02.007
6.
Kumbinarasaiah
,
S.
, and
Raghunatha
,
K. R.
,
2022
, “
Numerical Solution of the Jeffery–Hamel Flow Through the Wavelet Technique
,”
Heat Transf.
,
51
(
2
), pp.
1568
1584
.10.1002/htj.22364
7.
Nourazar
,
S.
,
Dehghanpour
,
H. R.
, and
Ramezani
,
M.
,
2020
, “
A Novel Semi-Analytical Solution to Jeffery-Hamel Equation
,”
J. Phys. Commun.
,
4
(
7
), p.
075009
.10.1088/2399-6528/aba034
8.
Biswal
,
U.
,
Chakraverty
,
S.
, and
Ojha
,
B. K.
,
2021
, “
Application of Homotopy Perturbation Method in Inverse Analysis of Jeffery–Hamel Flow Problem
,”
Eur. J. Mech. B/Fluids
,
86
, pp.
107
112
.10.1016/j.euromechflu.2020.12.004
9.
Moghimi
,
S. M.
,
Domairry
,
G.
,
Soleimani
,
S.
,
Ghasemi
,
E.
, and
Bararnia
,
H.
,
2011
, “
Application of Homotopy Analysis Method to Solve MHD Jeffery-Hamel Flows in Non-Parallel Walls
,”
Adv. Eng. Softw.
,
42
(
3
), pp.
108
113
.10.1016/j.advengsoft.2010.12.007
10.
Joneidi
,
A. A.
,
Domairry
,
G.
, and
Babaelahi
,
M.
,
2010
, “
Three Analytical Methods Applied to Jeffery-Hamel Flow
,”
Commun. Nonlinear Sci. Numer. Simul
,
15
(
11
), pp.
3423
3434
.10.1016/j.cnsns.2009.12.023
11.
Moghimi
,
S. M.
,
Ganji
,
D. D.
,
Bararnia
,
H.
,
Hosseini
,
M.
, and
Jalaal
,
M.
,
2011
, “
Homotopy Perturbation Method for Nonlinear MHD JefferyHamel Problem
,”
Comput. Math. Appl
,
61
(
8
), pp.
2213
2216
.10.1016/j.camwa.2010.09.018
12.
Esmaeilpour
,
M.
, and
Ganji
,
D. D.
,
2010
, “
Solution of the Jeffery-Hamel Flow Problem by Optimal Homotopy Asymptotic Method
,”
Comput. Math. Appl.
,
59
(
11
), pp.
3405
3411
.10.1016/j.camwa.2010.03.024
13.
Meher
,
R.
, and
Patel
,
N. D.
,
2019
, “
Analytical Investigation of MHD Jeffery–Hamel Flow Problem With Heat Transfer by Differential Transform Method
,”
SN Appl. Sci.
,
1
(
7
), pp.
1
12
.10.1007/s42452-019-0632-z
14.
Moradi
,
A.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2013
, “
Investigation of Nanoparticles Effect on the Jeffery-Hamel Flow
,”
Arab, J. Sci. Eng.
,
38
(
10
), pp.
2845
2853
.10.1007/s13369-012-0472-2
15.
Bildik
,
N.
, and
Deniz
,
S.
,
Department of Mathematics, Manisa Celal Bayar University, Manisa, Turkey
,
2020
, “
Optimal Iterative Perturbation Technique for Solving Jeffery–Hamel Flow With High Magnetic Field and Nanoparticle
,”
J. Appl. Anal. Comput.
,
10
(
6
), pp.
2476
2490
.10.11948/20190378
16.
Biswal
,
U.
, and
Chakraverty
,
S.
,
2021
, “
Investigation of Jeffery-Hamel Flow for Nanofluid in the Presence of Magnetic Field by a New Approach in the Optimal Homotopy Analysis Method
,”
J. Appl. Comput. Mech.
,
8
(
1
), pp.
48
59
.10.22055/JACM.2020.31909.1937
17.
Berrehal
,
H.
, and
Sowmya
,
G.
,
2021
, “
Heat Transfer Analysis of Nanofluid Flow in a Channel With Non-Parallel Walls
,”
J. Mech. Sci. Technol.
,
35
(
1
), pp.
171
177
.10.1007/s12206-020-1216-y
18.
Ganji
,
D. D.
, and
Hatami
,
M.
,
2014
, “
Three Weighted Residual Methods Based on Jeffery-Hamel Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
3
), pp.
654
668
.10.1108/HFF-06-2012-0137
19.
Rostami
,
A. K.
,
Akbari
,
M. R.
,
Ganji
,
D. D.
, and
Heydari
,
S.
,
2014
, “
Investigating Jeffery-Hamel Flow With High Magnetic Field and Nanoparticle by HPM and AGM
,”
Cent, Eur. J. Eng.
,
4
(
4
), pp.
357
370
.10.2478/s13531-013-0175-9
20.
Umavathi
,
J. C.
, and
Shekar
,
M.
,
2013
, “
Effect of MHD on Jeffery-Hamel Flow in Nanofluids by Differential Transform Method
,”
Int. J. Eng. Res. Appl.
,
3
(
5
), pp.
953
962
.https://www.ijera.com/papers/Vol3_issue5/FJ35953962.pdf
21.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
,
Ashorynejad
,
H. R.
, and
Rokni
,
H. B.
,
2012
, “
Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nanoparticle by Adomian Decomposition Method
,”
Appl. Math. Mech. (Engl. Ed.)
,
33
(
1
), pp.
25
36
.10.1007/s10483-012-1531-7
22.
Li
,
Z.
,
Khan
,
I.
,
Shafee
,
A.
,
Tlili
,
I.
, and
Asifa
,
T.
,
2018
, “
Energy Transfer of Jeffery – Hamel Nanofluid Flow Between Non-Parallel Walls Using Maxwell – Garnetts (MG) and Brinkman Models
,”
Energy Rep.
,
4
, pp.
393
399
.10.1016/j.egyr.2018.05.003
23.
Biswal
,
U.
,
Chakraverty
,
S.
,
Ojha
,
B. K.
, and
Hussein
,
A. K.
,
2021
, “
Study of Jeffery-Hamel Flow Problem for Nanofluid With Fuzzy Volume Fraction Using Double Parametric Based Adomian Decomposition Method
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105435
.10.1016/j.icheatmasstransfer.2021.105435
24.
Hanss
,
M.
,
2005
,
Applied Fuzzy Arithmetic: An Introduction With Engineering Applications
,
Springe
,
New York
.
25.
Chakraverty
,
S.
, and
Perera
,
S.
, eds.,
2018
,
Recent Advances in Applications of Computational and Fuzzy Mathematics
,
Springer
,
Singapore
.
26.
Chakraverty
,
S.
,
Tapaswini
,
S.
, and
Behera
,
D.
,
2016
,
Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications
, John
Wiley & Sons
, Hoboken,
NJ
.
27.
Chakraverty
,
S.
, and
Biswal
,
U.
,
2020
, “
Modeling and Simulation of Nanofluid Flow Problems
,”
Synth. Lect. Mech. Eng.
,
5
(
1
), pp.
1
89
.10.2200/S00978ED1V01Y201912MEC025
28.
Biswal
,
U.
,
Chakraverty
,
S.
, and
Ojha
,
B. K.
,
2019
, “
Natural Convection of non-Newtonian Nanofluid Flow Between Two Vertical Parallel Plates
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
6
), pp.
1984
2008
.10.1108/HFF-06-2018-0302
29.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
30.
He
,
J. H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
257
262
.10.1016/S0045-7825(99)00018-3
31.
He
,
J. H.
,
2003
, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
,
135
(
1
), pp.
73
79
.10.1016/S0096-3003(01)00312-5
32.
He
,
J. H.
,
2005
, “
Application of Homotopy Perturbation Method to Nonlinear Wave Equations
,”
Chaos, Solitons Fractals
,
26
(
3
), pp.
695
700
.10.1016/j.chaos.2005.03.006
33.
Chakraverty
,
S.
,
Mahato
,
N.
,
Karunakar
,
P.
, and
Rao
,
T. D.
,
2019
,
Advanced Numerical and Semi-Analytical Methods for Differential Equations
, John
Wiley & Sons
, Hoboken, NJ
.
You do not currently have access to this content.