Abstract

In this paper, we consider the stiff systems of ordinary differential equations arising from chemistry kinetics. We develop the fractional order model for chemistry kinetics problems by using the new fractal operator such as fractal fractional and Atangana-Toufik scheme. Recently a deep concept of fractional differentiation with nonlocal and nonsingular kernel was introduced to extend the limitations of the conventional Riemann–Liouville and Caputo fractional derivatives. Many scientific results are presented in the paper and also prove these results by effective numerical results. These concepts are very important to use for real-life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating, and biomass transfer problem. These results are very important for solving the nonlinear model in chemistry kinetics which will be helpful to understand the chemical reactions and their actual behavior; also the observation can be developed for future kinematic chemical reactions with the help of these results.

References

1.
Caputo
,
M.
, and
Fabrizio
,
M. A.
,
2015
, “
New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
(
2
), pp.
1
13
.10.12785/pfda/010201
2.
Losada
,
J.
, and
Nieto
,
J. J.
,
2015
, “
Properties of a New Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
(
2
), pp.
87
92
.10.12785/pfda/010202
3.
Atangana
,
A.
, and
Alkahtani
,
B. S. T.
,
2015
, “
Analysis of the Keller–Segel Model With a Fractional Derivative Without Singular Kernel
,”
Entropy
,
17
(
12
), pp.
4439
4453
.10.3390/e17064439
4.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel Theory and Application to t Transfer Model
,”
Therm. Sci.
,
20
(
2
), pp.
763
769
.10.2298/TSCI160111018A
5.
Farman
,
M.
,
Saleem
,
M. U.
,
Tabassum
,
M. F.
,
Ahmad
,
A.
, and
Ahmad
,
M. O.
,
2019
, “
A Linear Control of Composite Model for Glucose Insulin Glucagon
,”
Ain Shamas Eng. J.
,
10
(
4
), pp.
867
872
.10.1016/j.asej.2019.04.001
6.
Farman
,
M.
,
Saleem
,
M. U.
,
Ahmad
,
A.
,
Imtiaz
,
S.
,
Tabassum
,
M. F.
,
Akram
,
S.
, and
Ahmad
,
M. O.
,
2020
, “
A Control of Glucose Level in Insulin Therapies for the Development of Artificial Pancreas by Atangana Baleanu Fractional Derivative
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2639
2648
.10.1016/j.aej.2020.04.027
7.
Farman
,
M.
,
Akgül
,
A.
,
Baleanu
,
D.
,
Imtiaz
,
S.
, and
Ahmad
,
A.
,
2020
, “
Analysis of Fractional Order Chaotic Financial Model With Minimum Interest Rate Impact
,”
Fractal Fract.
,
4
(
3
), p.
43
.10.3390/fractalfract4030043
8.
Saleem
,
M. U.
,
Farman
,
M.
,
Ahmad
,
A.
,
Ehsan
,
H.
, and
Ahmad
,
M. O.
,
2020
, “
A Caputo Fabrizio Fractional Order Model for Control of Glucose in Insulin Therapies for Diabetes
,”
Ain Shamas Eng. J.
,
11
(
4
), pp.
1309
1316
.10.1016/j.asej.2020.03.006
9.
Khan
,
M. A.
, and
Atangana
,
A.
,
2020
, “
Modeling the Dynamics of Novel Coronavirus (2019- NCOV) With Fractional Derivative
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2379
2389
.202010.1016/j.aej.2020.02.033
10.
Atangana
,
A.
,
Bonyah
,
E.
, and
Elsadany
,
A. A. A.
,
2020
, “
Fractional-Order Optimal 4D Chaotic Financial Model to Mittag-Leffler Law
,”
Chin. J. Phys.
,
65
, pp.
38
53
.10.1016/j.cjph.2020.02.003
11.
Huo
,
H. F.
,
Chen
,
R.
, and
Wang
,
X. Y.
,
2016
, “
Modelling and Stability of HIV/AIDS Epidemic Model With Treatment
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6550
6559
.10.1016/j.apm.2016.01.054
12.
Moore
,
E. J.
,
Sirisubtawee
,
S.
, and
Koonprasert
,
S. A.
,
2019
, “
Caputo–Fabrizio Fractional Differential Equation Model for HIV/AIDS with Treatment Compartment
,”
Adv. Differ. Eq.
,
2019
(
1
), pp.
1
13
.10.1186/s13662-019-2138-9
13.
Toufik
,
M.
, and
Atangana
,
A.
,
2017
, “
New Numerical Approximation of Fractional Derivative With Non-Local and Non-Singular Kernel: Application to Chaotic Models
,”
Eur. Phys. J. Plus
,
132
(
10
), p.
444
.10.1140/epjp/i2017-11717-0
14.
Lic
,
M.
, and
Inc
,
M.
,
2015
, “
The First Integral Method for the Time Fractional Kaup-Boussinesq System With Time Dependent Coefficient
,”
Appl. Math. Comput.
,
254
, pp.
70
74
.10.1016/j.amc.2014.12.094
15.
Baleanu
,
D.
,
Uğurlu
,
Y.
,
Inc
,
M.
, and
Kilic
,
B.
,
2015
, “
Improved (G'/G)(G'/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn–Hilliard Equation
,”
ASME. J. Comput. Nonlinear Dynam.
,
10
(
5
), p.
051016
.10.1115/1.4029254
16.
Baleanu
,
D.
,
Inc
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2018
, “
Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws
,”
ASME. J. Comput. Nonlinear Dynam.
,
13
(
2
), p.
021011
.10.1115/1.4037765
17.
Baleanu
,
D.
,
Inc
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2017
, “
Lie Symmetry Analysis, Exact Solutions and Conservation Laws for the Time Fractional Modified Zakharov–Kuznetsov Equation
,”
Nonlinear Anal. Model. Control
,
22
(
6
), pp.
861
876
.10.15388/NA.2017.6.9
18.
Mustafa
,
I.
,
Abdullahi
,
Y.
,
Aliyu
,
A. I.
, and
Baleanu
,
D.
,
2018
, “
Time-Fractional Cahn–Allen and Time-Fractional Klein–Gordon Equations: Lie Symmetry Analysis, Explicit Solutions and Convergence Analysis
,”
Phys. A Stat. Mech. Appl.
,
493
, pp.
94
106
.10.1016/j.physa.2017.10.010
19.
Mustafa
,
I.
,
Abdullahi
,
Y.
,
Aliyu
,
A. I.
, and
Baleanu
,
D.
,
2018
, “
Lie Symmetry Analysis, Explicit Solutions Andconservation Lawsfor the Space–Time Fractional Nonlinear Evolution Equations
,”
Phys. A: Stat. Mech. Appl.
,
496
, pp.
371
383
.10.1016/j.physa.2017.12.119
20.
Qureshi
,
S.
,
Yusuf
,
A.
,
Shaikh
,
A. A.
, and
Inc
,
M.
,
2019
, “
Transmission Dynamics of Varicella Zoster Virus Modeled by Classical and Novel Fractional Operators Using Real Statistical Data
,”
Phys. A: Stat. Mech. Appl.
,
534
, p.
122149
.10.1016/j.physa.2019.122149
21.
Korpinar
,
Z.
,
Tchier
,
F.
,
Inc
,
M.
,
Ragoub
,
L.
, and
Bayram
,
M.
,
2019
, “
New Solutions of the fractional boussinesq-Like Equations by Means of Conformable Derivatives
,”
Results Phys.
,
13
, p.
102339
.10.1016/j.rinp.2019.102339
22.
Korpinar
,
Z.
,
Tchier
,
F.
,
Inc
,
M.
,
Ragoub
,
L.
, and
Bayram
,
M.
,
2019
, “
New Soliton Solutions of the fractional regularized long Wave Burger Equation by Means of Conformable Derivative
,”
Results Phys.
,
14
, p.
102395
.10.1016/j.rinp.2019.102395
23.
Hashemi
,
M. S.
,
Inc
,
M.
, and
M.
,
Bayram
,
2019
, “
Symmetry Properties and Exact Solutions of the Time Fractional Kolmogorov-Petrovskii-Piskunov Equation
,”
Rev. Mexicana de Fisica
,
65
(
5 Sept-Oct
), pp.
529
535
.10.31349/RevMexFis.65.529
24.
Yusuf
,
A.
,
Inc
,
M.
, and
Bayram
,
M.
,
2019
, “
Invariant and Simulation Analysis to the Time Fractional Abrahams–Tsuneto Reaction Diffusion System
,”
Phys. Scr.
,
94
(
12
), p.
125005
.10.1088/1402-4896/ab373b
25.
Korpinar
,
Z.
,
Inc
,
M.
,
Baleanu
,
D.
, and
Bayram
,
M.
,
2019
, “
Theory and Application for the Time Fractional Gardner Equation With Mittag-Leffler Kernel
,”
J. Taibah Univ. Sci.
,
13
(
1
), pp.
813
819
.10.1080/16583655.2019.1640446
26.
Ghanbari
,
B.
,
Kumar
,
D.
, and
Singh
,
J.
,
2021
, “
An Efficient Numerical Method for Fractional Model of Allelopathic Stimulatory Phytoplankton Species With Mittag-Leffler Law
,”
Discrete Contin. Dyn. Syst. - S
,
14
(
10
), pp.
3577
3587
.10.3934/dcdss.2020428
27.
Singh
,
J.
,
Ganbari
,
B.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
Analysis of Fractional Model of Guava for Biological Pest Control With Memory Effect
,”
J. Adv. Res.
,
32
, pp.
99
108
.10.1016/j.jare.2020.12.004
28.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos, Solitons Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
29.
Singh
,
J.
,
Ahmadian
,
A.
,
Rathore
,
S.
,
Kumar
,
D.
,
Baleanu
,
D.
,
Salimi
,
M.
, and
Salahshour
,
S.
,
2021
, “
An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media
,”
Numer. Methods Part. Diff. Eq.
,
37
(
2
), pp.
1439
1448
.10.1002/num.22589
30.
Yadav
,
S.
,
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2021
, “
Analysis and Dynamics of Fractional Order Covid-19 Model With Memory Effect
,”
Results Phys.
,
24
, p.
104017
.10.1016/j.rinp.2021.104017
31.
Chemical Kinetics
, 2020, “Chemical Kinetics,” accessed Aug. 24, 2021, https://chem.libretexts.org/@go/page/106822
32.
Scholz
,
G.
, and
Scholz
,
F.
,
2015
, “
First-Order Differential Equations in Chemistry
,”
Chem. Texts
,
1
, p.
1
.10.1007/s40828-014-0001-x
33.
Craciun
,
G.
,
Matthew
,
D.
,
Johnston
,
Szederkényi
,
G.
,
Tonello
,
E.
,
Tóth
,
J.
, and
Polly
,
Y. Y.
,
2020
, “
Realizations of Kinetic Differential Equations
,”
Math. Biosci. Eng.
,
17
(
1
), pp.
862
892
.10.3934/mbe.2020046
34.
Akgül
,
A.
,
Sarbaz
., and
H. A.
,
Khoshnaw
,
2020
, “
Application of Fractional on Non-Linear Biochemical Reaction Models
,”
Int. J. Intell. Networks
,
1
, pp.
52
58
.10.1016/j.ijin.2020.05.001
35.
Amat
,
S.
,
Legaz
,
M. J.
, and
Ruiz-Álvarez
,
J.
,
2019
, “
On a Variational Method for Stiff Differential Equations Arising From Chemistry Kinetics
,”
Mathematics
,
7
(
5
), p.
459
. 10.3390/math7050459
You do not currently have access to this content.