Abstract

In this paper, an arbitrary Lagrangian–Eulerian (ALE) formulation based on the consistent corotational method is presented for the geometric nonlinear dynamic analysis of two-dimensional (2D) viscoelastic beams. In the ALE description, mesh nodes can be moved in some arbitrarily specified way, which is convenient for investigating problems with moving boundaries and loads. By introducing a corotational frame, the rigid-body motion of an element can be removed. Then, the pure deformation and the deformation rate of the element can be measured in the local frame. This method can avoid rigid-body motion damping. In addition, the elastic force vector, the inertia force vector, and the internal damping force vector are derived with the same shape functions to ensure the consistency and independence of the element. Therefore, different assumptions can be made to describe the local deformation of the element. In this paper, the interdependent interpolation element (IIE) and the Kelvin–Voigt model are introduced in the local frame to consider the shear deformation, rotary inertia, and viscoelasticity. Moreover, the presented method is capable of considering the arbitrary curved initial geometry of a beam. Numerical examples show that internal damping dampens only the pure elastic deformation of the beam but does not dampen the rigid-body motion. Three dynamic problems of a beam with a moving boundary or subjected to a moving load are investigated numerically by the presented formulation and the commercial software ansys to verify the validity, versatility, and computational efficiency of the presented formulation.

References

1.
Park
,
S.
,
Yoo
,
H. H.
, and
Chung
,
J.
,
2013
, “
Vibrations of an Axially Moving Beam With Deployment or Retraction
,”
AIAA J.
,
51
(
3
), pp.
686
696
.10.2514/1.J052059
2.
Zhao
,
X. W.
, and
van der Heijden
,
G. H. M.
,
2018
, “
Planar Dynamics of Large-Deformation Rods Under Moving Loads
,”
J. Sound Vib.
,
412
, pp.
309
325
.10.1016/j.jsv.2017.09.037
3.
Li
,
G. Q.
, and
Zhu
,
Z. H.
,
2019
, “
On Libration Suppression of Partial Space Elevator With a Moving Climber
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2107
2125
.10.1007/s11071-019-05108-0
4.
Sheng
,
G. G.
, and
Wang
,
X.
,
2017
, “
The Geometrically Nonlinear Dynamic Responses of Simply Supported Beams Under Moving Loads
,”
Appl. Math. Model.
,
48
, pp.
183
195
.10.1016/j.apm.2017.03.064
5.
Stylianou
,
M.
, and
Tabarrok
,
B.
,
1994
, “
Finite Element Analysis of an Axially Moving Beam, Part I: Time Integration
,”
J. Sound Vib.
,
178
(
4
), pp.
433
453
.10.1006/jsvi.1994.1497
6.
Sun
,
X.
,
Xu
,
M.
, and
Zhong
,
R.
,
2017
, “
Dynamic Analysis of the Tether Transportation System Using Absolute Nodal Coordinate Formulation
,”
Acta Astronaut.
,
139
, pp.
266
277
.10.1016/j.actaastro.2017.07.020
7.
Shi
,
G.
,
Li
,
G.
,
Zhu
,
Z.
, and
Zhu
,
Z. H.
,
2019
, “
A Virtual Experiment for Partial Space Elevator Using a Novel High-Fidelity FE Model
,”
Nonlinear Dyn.
,
95
(
4
), pp.
2717
2727
.10.1007/s11071-018-4718-8
8.
Du
,
J. L.
,
Cui
,
C. Z.
,
Bao
,
H.
, and
Qiu
,
Y. Y.
,
2015
, “
Dynamic Analysis of Cable-Driven Parallel Manipulators Using a Variable Length Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011013
.10.1115/1.4026570
9.
Azizi
,
N.
,
Saadatpour
,
M. M.
, and
Mahzoon
,
M.
,
2012
, “
Using Spectral Element Method for Analyzing Continuous Beams and Bridges Subjected to a Moving Load
,”
Appl. Math. Model.
,
36
(
8
), pp.
3580
3592
.10.1016/j.apm.2011.10.019
10.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
.10.1115/1.1849169
11.
Marynowski
,
K.
, and
Kapitaniak
,
T.
,
2014
, “
Dynamics of Axially Moving Continua
,”
Int. J. Mech. Sci.
,
81
, pp.
26
41
.10.1016/j.ijmecsci.2014.01.017
12.
Eftekhari
,
S. A.
,
2016
, “
Differential Quadrature Procedure for In-Plane Vibration Analysis of Variable Thickness Circular Arches Traversed by a Moving Point Load
,”
Appl. Math. Model.
,
40
(
7–8
), pp.
4640
4663
.10.1016/j.apm.2015.11.046
13.
García-Vallejo
,
D.
,
Valverde
,
J.
, and
Domínguez
,
J.
,
2005
, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
42
(
4
), pp.
347
369
.10.1007/s11071-005-6445-1
14.
Zhang
,
Y.
,
Tian
,
Q.
,
Chen
,
L.
, and
Yang
,
J.
,
2009
, “
Simulation of a Viscoelastic Flexible Multibody System Using Absolute Nodal Coordinate and Fractional Derivative Methods
,”
Multibody Syst. Dyn.
,
21
(
3
), pp.
281
303
.10.1007/s11044-008-9139-x
15.
Mohamed
,
A. N. A.
, and
Shabana
,
A. A.
,
2011
, “
A Nonlinear Visco-Elastic Constitutive Model for Large Rotation Finite Element Formulations
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
57
79
.10.1007/s11044-011-9244-0
16.
Yoshimura
,
T.
,
Hino
,
J.
, and
Anantharayana
,
N.
,
1986
, “
Vibration Analysis of a Non-Linear Beam Subjected to Moving Loads by Using the Galerkin Method
,”
J. Sound Vib.
,
104
(
2
), pp.
179
186
.10.1016/0022-460X(86)90262-2
17.
Wang
,
R. T.
, and
Chou
,
T. H.
,
1998
, “
Non-Linear Vibration of Timoshenko Beam Due to a Moving Force and the Weight of Beam
,”
J. Sound Vib.
,
218
(
1
), pp.
117
131
.10.1006/jsvi.1998.1827
18.
Şimşek
,
M.
, and
Kocatürk
,
T.
,
2009
, “
Nonlinear Dynamic Analysis of an Eccentrically Prestressed Damped Beam Under a Concentrated Moving Harmonic Load
,”
J. Sound Vib.
,
320
(
1–2
), pp.
235
253
.10.1016/j.jsv.2008.07.012
19.
Karimi
,
A. H.
, and
Ziaei-Rad
,
S.
,
2015
, “
Vibration Analysis of a Beam With Moving Support Subjected to a Moving Mass Travelling With Constant and Variable Speed
,”
Commun. Nonlinear Sci. Numer. Simul.
,
29
(
1–3
), pp.
372
390
.10.1016/j.cnsns.2015.05.018
20.
Behdinan
,
K.
,
Stylianou
,
M. C.
, and
Tabarrok
,
B.
,
1997
, “
Dynamics of Flexible Sliding Beams—Non-Linear Analysis Part I: Formulation
,”
J. Sound Vib.
,
208
(
4
), pp.
517
539
.10.1006/jsvi.1997.1167
21.
Behdinan
,
K.
,
Stylianou
,
M. C.
, and
Tabarrok
,
B.
,
1997
, “
Dynamics of Flexible Sliding Beams—Non-Linear Analysis Part II: Transient Response
,”
J. Sound Vib.
,
208
(
4
), pp.
541
565
.10.1006/jsvi.1997.1168
22.
Gürgöze
,
M.
, and
Yüksel
,
S.
,
1999
, “
Transverse Vibrations of a Flexible Beam Sliding Through a Prismatic Joint
,”
J. Sound Vib.
,
223
(
3
), pp.
467
482
.10.1006/jsvi.1999.2155
23.
Mciver
,
D. B.
,
1973
, “
Hamilton's Principle for Systems of Changing Mass
,”
J. Eng. Math.
,
7
(
3
), pp.
249
261
.10.1007/BF01535286
24.
Hino
,
J.
,
Yoshimura
,
T.
, and
Ananthanarayana
,
N.
,
1985
, “
Vibration Analysis of Non-Linear Beams Subjected to a Moving Load Using the Finite Element Method
,”
J. Sound Vib.
,
100
(
4
), pp.
477
491
.10.1016/S0022-460X(85)80002-X
25.
Vu-Quoc
,
L.
, and
Li
,
S.
,
1995
, “
Dynamics of Sliding Geometrically-Exact Beams: Large Angle Maneuver and Parametric Resonance
,”
Comput. Methods Appl. Mech. Eng.
,
120
(
1–2
), pp.
65
118
.10.1016/0045-7825(94)00051-N
26.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.10.1016/0045-7825(88)90073-4
27.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
854
.10.1115/1.3171870
28.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
855
863
.10.1115/1.3171871
29.
Humer
,
A.
,
2013
, “
Dynamic Modeling of Beams With Non-Material, Deformation-Dependent Boundary Conditions
,”
J. Sound Vib.
,
332
(
3
), pp.
622
641
.10.1016/j.jsv.2012.08.026
30.
Humer
,
A.
,
Steinbrecher
,
I.
, and
Vu-Quoc
,
L.
,
2020
, “
General Sliding-Beam Formulation: A Non-Material Description for Analysis of Sliding Structures and Axially Moving Beams
,”
J. Sound Vib.
,
480
, p.
115341
.10.1016/j.jsv.2020.115341
31.
Wu
,
J. J.
,
Whittaker
,
A. R.
, and
Cartmell
,
M. P.
,
2000
, “
The Use of Finite Element Techniques for Calculating the Dynamic Response of Structures to Moving Loads
,”
Comput. Struct.
,
78
(
6
), pp.
789
799
.10.1016/S0045-7949(00)00055-9
32.
Zupan
,
E.
, and
Zupan
,
D.
,
2018
, “
Dynamic Analysis of Geometrically Non-Linear Three-Dimensional Beams Under Moving Mass
,”
J. Sound Vib.
,
413
, pp.
354
367
.10.1016/j.jsv.2017.10.013
33.
Al-Bedoor
,
B. O.
, and
Khulief
,
Y. A.
,
1996
, “
Finite Element Dynamic Modeling of a Translating and Rotating Flexible Link
,”
Comput. Methods Appl. Mech. Eng.
,
131
(
1–2
), pp.
173
189
.10.1016/0045-7825(95)00968-X
34.
Steinbrecher
,
I.
,
Humer
,
A.
, and
Vu-Quoc
,
L.
,
2017
, “
On the Numerical Modeling of Sliding Beams: A Comparison of Different Approaches
,”
J. Sound Vib.
,
408
, pp.
270
290
.10.1016/j.jsv.2017.07.010
35.
Behdinan
,
K.
, and
Tabarrok
,
B.
,
1998
, “
A Finite Element Formulation for Sliding Beams, Part I
,”
Int. J. Numer. Methods Eng.
,
43
(
7
), pp.
1309
1333
.10.1002/(SICI)1097-0207(19981215)43:7<1309::AID-NME456>3.0.CO;2-2
36.
Behdinan
,
K.
,
Stylianou
,
M. C.
, and
Tabarrok
,
B.
,
1998
, “
Sliding Beams, Part II: Time Integration
,”
Int. J. Numer. Methods Eng.
,
43
(
7
), pp.
1335
1363
.10.1002/(SICI)1097-0207(19981215)43:7<1335::AID-NME472>3.0.CO;2-L
37.
Behdinan
,
K.
,
Stylianou
,
M. C.
, and
Tabarrok
,
B.
,
1998
, “
Co-Rotational Dynamic Analysis of Flexible Beams
,”
Comput. Methods Appl. Mech. Eng.
,
154
(
3–4
), pp.
151
161
.10.1016/S0045-7825(97)00124-2
38.
Deng
,
L. F.
, and
Zhang
,
Y. H.
,
2020
, “
A Consistent Corotational Formulation for the Nonlinear Dynamic Analysis of Sliding Beams
,”
J. Sound Vib.
,
476
, p.
115298
.10.1016/j.jsv.2020.115298
39.
Deng
,
L. F.
,
Kennedy
,
D.
, and
Zhang
,
Y. H.
,
2021
, “
Dynamics of 3D Sliding Beams Undergoing Large Overall Motions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
98
, p.
105778
.10.1016/j.cnsns.2021.105778
40.
Deng
,
L. F.
, and
Zhang
,
Y. H.
,
2021
, “
Nonlinear Dynamic Analysis of Arresting Gears Using 2D Non-Material Variable-Domain Corotational Elements
,”
Mech. Mach. Theory
,
163
, p.
104377
.10.1016/j.mechmachtheory.2021.104377
41.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J. P.
, and
Rodríguez-Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics, Vol. 1: Fundamentals
,
Wiley
,
Chichester, UK
, pp.
413
438
.
42.
Hong
,
D. F.
, and
Ren
,
G. X.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
.10.1007/s11044-010-9242-7
43.
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2013
, “
A Lagrange-Eulerian Formulation of an Axially Moving Beam Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
343
358
.10.1007/s11044-013-9350-2
44.
Liu
,
J. P.
,
Cheng
,
Z. B.
, and
Ren
,
G. X.
,
2018
, “
An Arbitrary Lagrangian-Eulerian Formulation of a Geometrically Exact Timoshenko Beam Running Through a Tube
,”
Acta Mech.
,
229
(
8
), pp.
3161
3188
.10.1007/s00707-018-2161-z
45.
Escalona
,
J. L.
,
2017
, “
An Arbitrary Lagrangian-Eulerian Discretization Method for Modeling and Simulation of Reeving Systems in Multibody Dynamics
,”
Mech. Mach. Theory
,
112
, pp.
1
21
.10.1016/j.mechmachtheory.2017.01.014
46.
Zhang
,
H.
,
Guo
,
J. Q.
,
Liu
,
J. P.
, and
Ren
,
G. X.
,
2020
, “
An Efficient Multibody Dynamic Model of Arresting Cable Systems Based on ALE Formulation
,”
Mech. Mach. Theory
,
151
, p.
103892
.10.1016/j.mechmachtheory.2020.103892
47.
Le
,
T. N.
,
Battini
,
J. M.
, and
Hjiaj
,
M.
,
2011
, “
Efficient Formulation for Dynamics of Corotational 2D Beams
,”
Comput. Mech.
,
48
(
2
), pp.
153
161
.10.1007/s00466-011-0585-6
48.
Le
,
T. N.
,
Battini
,
J. M.
, and
Hjiaj
,
M.
,
2014
, “
A Consistent 3D Corotational Beam Element for Nonlinear Dynamic Analysis of Flexible Structures
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
538
565
.10.1016/j.cma.2013.11.007
49.
Nour-Omid
,
B.
, and
Rankin
,
C. C.
,
1991
, “
Finite Rotation Analysis and Consistent Linearization Using Projectors
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
353
384
.10.1016/0045-7825(91)90248-5
50.
Reddy
,
J. N.
,
1997
, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
149
(
1–4
), pp.
113
132
.10.1016/S0045-7825(97)00075-3
51.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
52.
Crisfield
,
M. A.
,
1997
,
Nonlinear Finite Element Analysis of Solids and Structures, Advanced Topics
, Vol.
2
,
Wiley
,
Chichester, UK
.
53.
Chen
,
K. D.
,
Liu
,
J. P.
,
Chen
,
J. Q.
,
Zhong
,
X. Y.
,
Mikkola
,
A.
,
Lu
,
Q. H.
, and
Ren
,
G. X.
,
2020
, “
Equivalence of Lagrange's Equations for Non-Material Volume and the Principle of Virtual Work in ALE Formulation
,”
Acta Mech.
,
231
(
3
), pp.
1141
1157
.10.1007/s00707-019-02576-8
54.
Amabili
,
M.
,
2018
, “
Nonlinear Mechanics of Shells and Plates: Composite
,”
Soft and Biological Materials
,
Cambridge University Press
,
New York
.
55.
Alijani
,
F.
,
Amabili
,
M.
,
Balasubramanian
,
P.
,
Carra
,
S.
,
Ferrari
,
G.
, and
Garziera
,
R.
,
2016
, “
Damping for Large-Amplitude Vibrations of Plates and Curved Panels, Part 1: Modelling and Experiments
,”
Int. J. Non-Linear Mech.
,
85
, pp.
23
40
.10.1016/j.ijnonlinmec.2016.05.003
56.
Amabili
,
M.
,
2019
, “
Derivation of Nonlinear Damping From Viscoelasticity in Case of Nonlinear Vibrations
,”
Nonlinear Dyn.
,
97
(
3
), pp.
1785
1797
.10.1007/s11071-018-4312-0
57.
Amabili
,
M.
,
Balasubramanian
,
P.
, and
Ferrari
,
G.
,
2021
, “
Nonlinear Vibrations and Damping of Fractional Viscoelastic Rectangular Plates
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3581
3609
.10.1007/s11071-020-05892-0
58.
Benítez
,
J. M.
, and
Montáns
,
F. J.
,
2013
, “
The Value of Numerical Amplification Matrices in Time Integration Methods
,”
Comput. Struct.
,
128
, pp.
243
250
.10.1016/j.compstruc.2013.07.001
59.
Hughes
,
T. J. R.
,
2000
, “
The Finite Element Method
,”
Linear Static and Dynamic Finite Element Analysis
,
Prentice Hall
,
New York
.
60.
Malakiyeh
,
M. M.
,
Shojaee
,
S.
, and
Bathe
,
K. J.
,
2019
, “
The Bathe Time Integration Method Revisited for Prescribing Desired Numerical Dissipation
,”
Comput. Struct.
,
212
, pp.
289
298
.10.1016/j.compstruc.2018.10.008
61.
Le
,
T. N.
,
Battini
,
J. M.
, and
Hjiaj
,
M.
,
2012
, “
Dynamics of 3D Beam Elements in a Corotational Context: A Comparative Study of Established and New Formulations
,”
Finite Elem. Anal. Des.
,
61
, pp.
97
111
.10.1016/j.finel.2012.06.007
You do not currently have access to this content.