Abstract

It is crucial to grasp wheel-rail contact forces in the evaluation of running safety and curving performance of railway vehicles. To measure the wheel-rail contact forces, instrumented wheelset, which has the strain gages on the wheel surface, is widely used. The purpose of this research is to increase the measurement accuracy of the wheel-rail contact forces by understanding the detailed characteristics of the instrumented wheelset. Although the various research works on the instrumented wheelset have been carried out to increase the measurement accuracy of wheel-rail contact forces, there are few works considering the longitudinal force and the lateral shift of the wheel-rail contact point. However, sometimes the longitudinal force has a non-negligible influence on the measurement accuracy on the instrumented wheelset. In this paper, the authors clarify the cross-sensitivity characteristics of the instrumented wheelset when the longitudinal force is applied to the various lateral position on the wheel tread through the finite element method (FEM) analysis and the static load test. The authors also propose a method to approximate the cross-sensitivity as an analytical function of the lateral and circumferential contact positions.

References

1.
Kamoshita
,
S.
,
Umehara
,
Y.
,
Suzuki
,
M.
, and
Hondo
,
T.
,
2019
, “
Total Performance Evaluation of the Assist Steering System for Bolsterless Bogie
,”
Q. Rep. RTRI
,
47
(
2
), pp.
65
71
. 10.2219/rtriqr.59.4_243
2.
Hondo
,
T.
, and
Suzuki
,
M.
,
2019
, “
In-Vehicle Control Method Based on Null-Space for Wheel Load Imbalance of Railway Vehicle by Using Pneumatically Controllable Leveling Valve Rod
,”
Trans. Jpn. Soc. Mech. Eng.
,
85
(
877
), p.
19
00195
(in Japanese).10.1299/transjsme.19-00195
3.
Ishida
,
H.
,
Miyamoto
,
T.
,
Maebashi
,
E.
,
Doi
,
H.
,
Iida
,
K.
, and
Furukawa
,
A.
,
2006
, “
Safety Assessment for Flange Climb Derailment of Trains Running at Low Speed on Sharp Curves
,”
Q. Rep. RTRI
,
47
(
2
), pp.
65
71
.10.2219/rtriqr.47.65
4.
Jin
,
X.
,
2020
, “
A Measurement and Evaluation Method for Wheel-Rail Contact Forces and Axle Stresses of High-Speed Train
,”
Measurement
,
149
, p.
106983
.10.1016/j.measurement.2019.106983
5.
Bracciali
,
A.
,
Cavaliere
,
F.
, and
Macherelli
,
M.
,
2014
, “
Review of Instrumented Wheelset Technology and Applications
,”
Second International Conference on Railway Technology: Research, Development and Maintenance
, Ajaccio, France, Apr. 8–11, p.
167
.
6.
Ekdahl
,
G.
,
Andersson
,
L.
, and
Wrang
,
M.
,
2007
, “
Instrumented Wheelset Technology—Advances and Applications
,”
International Heavy Haul Conference, Special Technical Session
, Kiruna, Sweden, June 11–13, pp.
599
605
.
7.
Cortis
,
D.
,
Bruner
,
M.
, and
Malavasi
,
G.
,
2020
, “
Development of a Wayside Measurement System for the Evaluation of Wheel-Rail Lateral Contact Force
,”
Measurement
,
159
(
8
), p.
107786
.10.1016/j.measurement.2020.107786
8.
Boronenko
,
Y.
,
Rahimov
,
R.
, and
Lafta
,
W. M.
,
2021
, “
Develop a New Approach Measuring the Wheel/Rail Interaction Loads
,”
Joint Rail Conference
, Virtual, Online, Apr. 20–21, pp.
JRC2021
58471
.
9.
Kanehara
,
H.
, and
Fujioka
,
T.
,
2002
, “
Measuring Rail/Wheel Contact Points of Running Railway Vehicles
,”
Wear
,
253
(
1–2
), pp.
275
283
.10.1016/S0043-1648(02)00114-X
10.
Bižić
,
M. B.
,
Petrovic
,
D. Z.
,
Tomić
,
M. C.
, and
Djinović
,
Z. V.
,
2017
, “
Development of Method for Experimental Determination of Wheel-Rail Contact Forces and Contact Point Position by Using Instrumented Wheelset
,”
Meas. Sci. Technol.
,
28
(
7
), p.
075902
.10.1088/1361-6501/aa666f
11.
Ozawa
,
R.
,
Fukushima
,
T.
,
Tanimoto
,
M.
,
Ogino
,
T.
, and
Kitajima
,
M.
,
2018
, “
Method of Identifying Contact Point of Wheel on the Rail by Measuring Strain Generated on Wheel Web
,”
25th Jointed Railway Technology Symposium
, Tokyo, Japan, Dec. 5–7, p.
3211
(in Japanese).
12.
Hondo
,
T.
, and
Noguchi
,
Y.
,
2020
, “
Measurement Method for Longitudinal Displacement of Wheel/Rail Contact Point Using Strain Gauges Put on Wheels
,”
Mech. Eng. J.
,
7
(
3
), p.
19
00659
.10.1299/mej.19-00659
13.
Garcia-Pozuelo
,
D.
,
Yunta
,
J.
,
Olatunbosun
,
O.
,
Yang
,
X.
, and
Diaz
,
V.
,
2017
, “
A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic
,”
Sensors
,
17
(
4
), p.
874
.10.3390/s17040874
14.
Sasano
,
T.
,
Ise
,
T.
,
Higuchi
,
M.
,
Suzuki
,
Y.
,
Sato
,
M.
, and
Tachiya
,
H.
,
2019
, “
Basic Study on Measurement of Road Friction Coefficient With Strain Induced in a Tire Side Face
,”
Trans. Jpn. Soc. Mech. Eng.
,
85
(
877
), p.
18
00402
(in Japanese).10.1299/transjsme.18-00402
15.
Xiong
,
Y.
, and
Yang
,
X.
,
2018
, “
A Review on in-Tire Sensor Systems for Tire-Road Interaction Studies
,”
Sensor Rev.
,
38
(
2
), pp.
231
238
.10.1108/SR-07-2017-0132
16.
Ishida
,
H.
,
Ueki
,
K.
,
Fukazawa
,
K.
,
Tezuka
,
K.
, and
Matsuo
,
M.
,
1994
, “
A New Continuous Measuring Method of Wheel/Rail Contact Forces
,”
Q. Rep. RTRI
,
35
(
2
), pp.
105
111
.
17.
Gómez
,
E.
,
Giménez
,
J. G.
, and
Alonso
,
A.
,
2011
, “
Method for the Reduction of Measurement Errors Associated to the Wheel Rotation in Railway Dynamometric Wheelsets
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3062
3077
.10.1016/j.ymssp.2011.05.006
18.
Urda
,
P.
,
Aceituno
,
J. F.
,
Noz
,
S. M.
, and
Escalona
,
J. L.
,
2020
, “
Artificial Neural Networks Applied to the Measurement of Lateral Wheel-Rail Contact Force: A Comparison With a Harmonic Cancellation Method
,”
Mech. Mach. Theory
,
153
, p.
103968
.10.1016/j.mechmachtheory.2020.103968
19.
Hondo
,
T.
,
2021
, “
Extraction Method for a Wheel Rotation Average of Longitudinal Force From Strain Data Acquired by Instrumented Wheelset Without the Use of Rotation Angle Sensor
,”
Trans. Jpn. Soc. Mech. Eng.
,
87
(
894
), p.
20
00237
(in Japanese). 10.1299/transjsme.20-00237
20.
Ohno
,
H.
,
Matsumoto
,
A.
,
Sato
,
Y.
,
Shimizu
,
M.
,
Tomeoka
,
M.
,
Matsumoto
,
K.
,
Tanimoto
,
M.
, and
Sato
,
Y.
,
2011
, “
New Monitoring System for Wheel/Rail Contact Force Without a Special Wheel-Set
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
77
(
774
), pp.
392
400
(in Japanese).10.1299/kikaic.77.392
21.
Ichiyanagi
,
Y.
,
Michitsuji
,
Y.
,
Matsumoto
,
A.
,
Sato
,
Y.
,
Ohno
,
H.
,
Ogata
,
S.
,
Tanimoto
,
M.
,
Iwamoto
,
A.
,
Fukushima
,
T.
, and
Nakai
,
T.
,
2019
, “
Running Position Matching for the Monitoring Bogie and Temporal Substruction Analysis of Derailment Coefficient
,”
Mech. Eng. J.
,
6
(
2
), p.
18
00426
.10.1299/mej.18-00426
22.
Hondo
,
T.
,
Tanaka
,
T.
,
Kuniyuki
,
S.
, and
Suzuki
,
M.
,
2020
, “
Measurement Method for Lateral Force Using Shear Strain at Measuring Point of Wheel Load in Instrumented Wheelsets
,”
29th Transportation and Logistics Conference
, Virtual, Online, Nov. 18–20, p.
1201
(in Japanese).10.1299/jsmetld.2020.29.1201
23.
Hondo
,
T.
,
Tanaka
,
T.
,
Kuniyuki
,
S.
, and
Suzuki
,
M.
,
2021
, “
Measurement Method of Lateral Force Utilizing Shear Strains Inside the Wheel Load Measuring Holes of Instrumented Wheelset
,”
RTRI Report
,
35
(
9
), pp.
11
16 (in Japanese
).https://bunken.rtri.or.jp/doc/fileDown.jsp?RairacID=0001004808
24.
Ishida
,
H.
, and
Endo
,
K.
,
2017
, “
Method of Measuring Lateral Force Exerted on Wheel With Brake Disc Fastened at Web
,”
Res. Bull. Meisei Univ. Phys. Sci. Eng.
,
53
, pp.
39
46
(in Japanese).https://meisei.repo.nii.ac.jp/?action=repository_uri&item_id=1348&file_id=22&file_no=1
25.
Higgns
,
R. L.
,
Otter
,
D. E.
, and
Martin
,
R. W.
,
1992
, “
High Accuracy Load Measuring Wheelset
,”
International Wheelset Congress
, Sydney, Australia, Sept. 27–Oct. 1, pp.
181
188
.
26.
Machado
,
F.
,
Malpica
,
N.
, and
Borromeo
,
S.
,
2019
, “
Parametric CAD Modeling for Open Source Scientific Hardware: Com-Paring Openscad and Freecad Python Scripts
,”
PLoS One
,
14
(
12
), p.
e0225795
.10.1371/journal.pone.0225795
27.
Schöberl
,
J.
,
1997
, “
Netgen-An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules
,”
Comput. Visual. Sci.
,
1
(
1
), pp.
41
52
.10.1007/s007910050004
28.
Dhondt
,
G.
, and
Witting
,
K.
, “
CalculiX: A Free Software Three-Dimensional Structural Finite Element Program
,” accessed Jan. 2021, http://www.calculix.de/
29.
Genao
,
F. A. Y.
,
Pineda
,
E. J.
,
Bednarcyk
,
B. A.
, and
Gustafson
,
P. A.
,
2019
, “
Integration of MAC/GMC Into Calculix, an Open Source Finite Element Code
,”
AIAA
Paper No. 2019-0775.10.2514/6.2019-0775
You do not currently have access to this content.