Abstract

We present an efficient data-driven sparse identification of dynamical systems. The work aims at reconstructing the different sets of governing equations and identifying discontinuity surfaces in hybrid systems when the number of discontinuities is known a priori. In a two-stage approach, we first locate the switches between separate vector fields. Then, the dynamics among the manifolds are regressed, in this case by making use of the existing algorithm of Brunton et al. (2016, “Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems,” Proc. Natl. Acad. Sci., 113(15), pp. 3932–3937). The reconstruction of the discontinuity surfaces comes as the outcome of a statistical analysis implemented via symbolic regression with small clusters (microclusters) and a rigid library of models. These allow to classify all the feasible discontinuities that are clustered and to reduce them into the actual discontinuity surfaces. The performances of the sparse regression hybrid model discovery are tested on two numerical examples, namely, a canonical spring-mass hopper and a free/impact electromagnetic energy harvester (FIEH), engineering archetypes characterized by the presence of a single and double discontinuity, respectively. Results show that a supervised approach, i.e., where the number of discontinuities is pre-assigned, is computationally efficient and it determines accurately both discontinuities and set of governing equations. A large improvement in the time of computation is found with the maximum achievable reliability. Informed regression-based identification offers the prospect to outperform existing data-driven identification approaches for hybrid systems at the expense of instructing the algorithm for expected discontinuities.

References

1.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
2.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.10.1126/science.1165893
3.
Jaeger
,
H.
, and
Haas
,
H.
,
2004
, “
Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
,”
Science
,
304
(
5667
), pp.
78
80
.10.1126/science.1091277
4.
Wang
,
W.-X.
,
Lai
,
Y.-C.
, and
Grebogi
,
C.
,
2016
, “
Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems
,”
Phys. Rep.
,
644
, pp.
1
76
.10.1016/j.physrep.2016.06.004
5.
Janes
,
K. A.
, and
Yaffe
,
M. B.
,
2006
, “
Data-Driven Modelling of Signal-Transduction Networks
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
11
), pp.
820
828
.10.1038/nrm2041
6.
Ghadami
,
A.
,
Chen
,
S.
, and
Epureanu
,
B. I.
,
2020
, “
Data-Driven Identification of Reliable Sensor Species to Predict Regime Shifts in Ecological Networks
,”
R. Soc. Open Sci.
,
7
(
8
), p.
200896
.10.1098/rsos.200896
7.
Reichstein
,
M.
,
Camps-Valls
,
G.
,
Stevens
,
B.
,
Jung
,
M.
,
Denzler
,
J.
,
Carvalhais
,
N.
, and
Prabhat
,
2019
, “
Deep Learning and Process Understanding for Data-Driven Earth System Science
,”
Nature
,
566
(
7743
), pp.
195
204
.10.1038/s41586-019-0912-1
8.
Yeo
,
K.
, and
Melnyk
,
I.
,
2019
, “
Deep Learning Algorithm for Data-Driven Simulation of Noisy Dynamical System
,”
J. Comput. Phys.
,
376
, pp.
1212
1231
.10.1016/j.jcp.2018.10.024
9.
Vellido
,
A.
,
Martín-Guerrero
,
J. D.
, and
Lisboa
,
P. J.
,
2012
, “
Making Machine Learning Models Interpretable
,” European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Vol.
12
, pp.
163
172
.
10.
Koyré
,
A.
,
1992
,
The Astronomical Revolution: Copernicus, Kepler, Borelli
,
Dover Books on Astronomy, Dover
, New York.
11.
Udrescu
,
S.-M.
, and
Tegmark
,
M.
,
2020
, “
Ai Feynman: A Physics-Inspired Method for Symbolic Regression
,”
Sci. Adv.
,
6
(
16
), p.
eaay2631
.10.1126/sciadv.aay2631
12.
Stijven
,
S.
,
Minnebo
,
W.
, and
Vladislavleva
,
K.
,
2011
, “
Separating the Wheat From the Chaff: On Feature Selection and Feature Importance in Regression Random Forests and Symbolic Regression
,”
Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO '11)
, July, pp.
623
630
.10.1145/2001858.2002059
13.
Quade
,
M.
,
Abel
,
M.
,
Nathan Kutz
,
J.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Rapid Model Recovery
,”
Chaos
,
28
(
6
), p.
063116
.10.1063/1.5027470
14.
Dubčáková
,
R.
,
2011
, “
Eureqa: Software Review
,”
Genet. Program. Evolvable Mach.
,
12
(
2
), pp.
173
178
.10.1007/s10710-010-9124-z
15.
Connor
,
J. T.
,
Martin
,
R. D.
, and
Atlas
,
L. E.
,
1994
, “
Recurrent Neural Networks and Robust Time Series Prediction
,”
IEEE Trans. Neural Networks
,
5
(
2
), pp.
240
254
.10.1109/72.279188
16.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
, Adaptive Computation and Machine Learning Series,
MIT Press
, Cambridge, MA.
17.
Yasuda
,
H.
,
Yamaguchi
,
K.
,
Miyazawa
,
Y.
,
Wiebe
,
R.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2020
, “
Data-Driven Prediction and Analysis of Chaotic Origami Dynamics
,”
Commun. Phys.
,
3
(
1
), p.
168
.10.1038/s42005-020-00431-0
18.
Champion
,
K.
,
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Data-Driven Discovery of Coordinates and Governing Equations
,”
Proc. Natl. Acad. Sci.
,
116
(
45
), pp.
22445
22451
.10.1073/pnas.1906995116
19.
Mangan
,
N. M.
,
Kutz
,
J. N.
,
Brunton
,
S. L.
, and
Proctor
,
J. L.
,
2017
, “
Model Selection for Dynamical Systems Via Sparse Regression and Information Criteria
,”
Proc. R. Soc. A
,
473
(
2204
), p.
20170009
.10.1098/rspa.2017.0009
20.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-Data Limit
,”
Proc. R. Soc. A
,
474
(
2219
), p.
20180335
.10.1098/rspa.2018.0335
21.
Thota
,
P.
, and
Dankowicz
,
H.
,
2006
, “
Continuous and Discontinuous Grazing Bifurcations in Impacting Oscillators
,”
Phys. D: Nonlinear Phenom.
,
214
(
2
), pp.
187
197
.10.1016/j.physd.2006.01.006
22.
Wiercigroch
,
M.
, and
de Kraker
,
B.
,
2000
,
Applied Nonlinear Dynamics and Chaos of Mechanical Systems With Discontinuities
,
World Scientific
, London.
23.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
,
1997
, “
Dynamics of Oscillators With Impact and Friction
,”
Chaos, Solitons Fractals
,
8
(
4
), pp.
535
558
.10.1016/S0960-0779(96)00121-X
24.
Shaw
,
S.
,
1986
, “
On the Dynamic Response of a System With Dry Friction
,”
J. Sound Vib.
,
108
(
2
), pp.
305
325
.10.1016/S0022-460X(86)80058-X
25.
Wiercigroch
,
M.
,
2000
, “
Modelling of Dynamical Systems With Motion Dependent Discontinuities
,”
Chaos, Solitons Fractals
,
11
(
15
), pp.
2429
2442
.10.1016/S0960-0779(00)00032-1
26.
Dick
,
A. J.
,
Balachandran
,
B.
,
Yabuno
,
H.
,
Numatsu
,
M.
,
Hayashi
,
K.
,
Kuroda
,
M.
, and
Ashida
,
K.
,
2009
, “
Utilizing Nonlinear Phenomena to Locate Grazing in the Constrained Motion of a Cantilever Beam
,”
Nonlinear Dyn.
,
57
(
3
), pp.
335
349
.10.1007/s11071-008-9445-0
27.
Haroun
,
A.
,
Yamada
,
I.
, and
Warisawa
,
S.
,
2015
, “
Study of Electromagnetic Vibration Energy Harvesting With Free/Impact Motion for Low Frequency Operation
,”
J. Sound Vib.
,
349
, pp.
389
402
.10.1016/j.jsv.2015.03.048
28.
Zhao
,
X.
,
Dankowicz
,
H.
, and
Nayfeh
,
A. H.
,
2004
, “
Modelling the Nonlinear Dynamics of Electrically Driven Impact Microactuators
,”
International Conference on MEMS, NANO and Smart Systems (ICMENS'04)
, Banff, AB, Canada, Aug. 25-27, pp.
700
705
.10.1109/ICMENS.2004.1509041
29.
Dey
,
S.
, and
Kartik
,
V.
,
2018
, “
Intermittent Impact Dynamics of a Cantilever Scanning a Surface at High Speed
,”
J. Appl. Phys.
,
123
(
12
), p.
124904
.10.1063/1.5012014
30.
Dankowicz
,
H.
,
Zhao
,
X.
, and
Misra
,
S.
,
2007
, “
Near-Grazing Dynamics in Tapping-Mode Atomic-Force Microscopy
,”
Int. J. Non-Linear Mech.
,
42
(
4
), pp.
697
709
.10.1016/j.ijnonlinmec.2006.10.005
31.
Mangan
,
N. M.
,
Askham
,
T.
,
Brunton
,
S. L.
,
Kutz
,
J. N.
, and
Proctor
,
J. L.
,
2019
, “
Model Selection for Hybrid Dynamical Systems Via Sparse Regression
,”
Proc. R. Soc. A
,
475
(
2223
), p.
20180534
.10.1098/rspa.2018.0534
32.
Garcáa
,
R.
, and
Pérez
,
R.
,
2002
, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
,
47
(
6
), pp.
197
301
.10.1016/S0167-5729(02)00077-8
33.
Hashemi
,
N.
,
Dankowicz
,
H.
, and
Paul
,
M. R.
,
2008
, “
The Nonlinear Dynamics of Tapping Mode Atomic Force Microscopy With Capillary Force Interactions
,”
J. Appl. Phys.
,
103
(
9
), p.
093512
.10.1063/1.2913054
34.
Leine
,
R.
, and
Nijmeijer
,
H.
,
2006
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
, Lecture Notes in Applied and Computational Mechanics,
Springer
,
Berlin
.
35.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
36.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc., Ser. B (Methodological)
,
58
(
1
), pp.
267
288
.10.1111/j.2517-6161.1996.tb02080.x
37.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.10.1109/TAC.1974.1100705
38.
Anderson
,
D.
, and
Burnham
,
K.
,
2004
,
Model Selection and Multi-Model Inference
, 2nd ed.,
Springer-Verlag
,
New York
.
39.
Zhao
,
X.
, and
Dankowicz
,
H.
,
2006
, “
Characterization of Intermittent Contact in Tapping-Mode Atomic
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
109
115
.10.1115/1.2162864
You do not currently have access to this content.