Abstract

This work addresses pipes conveying fluid and axially moving beams undergoing large deformations. A novel two-dimensional beam finite element is presented, based on the absolute nodal coordinate formulation (ANCF) with an extra Eulerian coordinate to describe axial motion. The resulting formulation is well known as the arbitrary Lagrangian Eulerian (ALE) method, which is often used to model axially moving beams and pipes conveying fluid. The proposed approach, which is derived from an extended version of Lagrange's equations of motion, allows for the investigation of the stability of pipes conveying fluid and axially moving beams for a certain axial velocity and stationary state of large deformation. Additionally, a multibody modeling approach allows us to extend the beam formulation for comoving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations, we show that axially moving beams and a larger number of discrete masses behave similarly as in the case of beams with evenly distributed mass.

References

1.
Gregory
,
R. W.
, and
Paidoussis
,
M. P.
,
1966
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid i. theory
,”
Proc. R. Soc. London Series A
,
293
(
1435
), pp.
512
527
.10.1098/rspa.1966.0187
2.
Thurman
,
A. L.
, and
Mote
,
C. D.
,
1969
, “
Nonlinear Oscillation of a Cylinder Containing a Flowing Fluid
,”
ASME Trans. Ser. B-J. Eng. Ind.
,
91
(
4
), pp.
1147
1155
.10.1115/1.3591763
3.
Ghayesh
,
M. H.
,
Paidoussis
,
M. P.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of Cantilevered Extensible Pipes Conveying Fluid
,”
J. Sound Vib.
,
332
(
24
), pp.
6405
6418
.10.1016/j.jsv.2013.06.026
4.
Stangl
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
An Alternative Approach for the Analysis of Nonlinear Vibrations of Pipes Conveying Fluid
,”
J. Sound Vib.
,
310
(
3
), pp.
493
511
.10.1016/j.jsv.2007.06.020
5.
Wickert
,
J.
,
1992
, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
,
27
(
3
), pp.
503
517
.10.1016/0020-7462(92)90016-Z
6.
Chakraborty
,
G.
,
Mallik
,
A.
, and
Hatwal
,
H.
,
1999
, “
Non-Linear Vibration of a Travelling Beam
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
655
670
.10.1016/S0020-7462(98)00017-1
7.
Parker
,
R.
,
1999
, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially-Moving String on an Elastic Foundation
,”
J. Sound Vib.
,
221
(
2
), pp.
205
219
.10.1006/jsvi.1998.1936
8.
Riedel
,
C.
, and
Tan
,
C.
,
2002
, “
Coupled, Forced Response of an Axially Moving Strip With Internal Resonance
,”
Int. J. Non-Linear Mech.
,
37
(
1
), pp.
101
116
.10.1016/S0020-7462(00)00100-1
9.
Suweken
,
G.
, and
Van Horssen
,
W.
,
2003
, “
On the Weakly Nonlinear, Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity
,”
Nonlinear Dyn.
,
31
(
2
), pp.
197
223
.10.1023/A:1022053131286
10.
Sze
,
K.
,
Chen
,
S.
, and
Huang
,
J.
,
2005
, “
The Incremental Harmonic Balance Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
,
281
(
3–5
), pp.
611
626
.10.1016/j.jsv.2004.01.012
11.
Ghayesh
,
M. H.
, and
Moradian
,
N.
,
2011
, “
Nonlinear Dynamic Response of Axially Moving, Stretched Viscoelastic Strings
,”
Arch. Appl. Mech.
,
81
(
6
), pp.
781
799
.10.1007/s00419-010-0446-3
12.
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Steady-State Transverse Response of an Axially Moving Beam With Time-Dependent Axial Speed
,”
Int. J. Non-Linear Mech.
,
49
, pp.
40
49
.10.1016/j.ijnonlinmec.2012.08.003
13.
Yang
,
T.-Z.
, and
Yang
,
X.-D.
,
2013
, “
Exact Solution of Supercritical Axially Moving Beams: Symmetric and Anti-Symmetric Configurations
,”
Arch. Appl. Mech.
,
83
(
6
), pp.
899
906
.10.1007/s00419-012-0725-2
14.
Ichikawa
,
M.
,
Miyakawa
,
Y.
, and
Matsuda
,
A.
,
2000
, “
Vibration Analysis of the Continuous Beam Subjected to a Moving Mass
,”
J. Sound Vib.
,
230
(
3
), pp.
493
506
.10.1006/jsvi.1999.2625
15.
Siddiqui
,
S.
,
Golnaraghi
,
M.
, and
Heppler
,
G.
,
2003
, “
Large Free Vibrations of a Beam Carrying a Moving Mass
,”
Int. J. Non-Linear Mech.
,
38
(
10
), pp.
1481
1493
.10.1016/S0020-7462(02)00084-7
16.
Wu
,
J.
,
Whittaker
,
A.
, and
Cartmell
,
M.
,
2001
, “
Dynamic Responses of Structures to Moving Bodies Using Combined Finite Element and Analytical Methods
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2555
2579
.10.1016/S0020-7403(01)00054-6
17.
Yi
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Stanciulescu
,
I.
,
2017
, “
Modeling and Vibratory Characteristics of a Mass-Carrying Cable System With Multiple Pulley Supports in Span Range
,”
Appl. Math. Modell.
,
49
, pp.
59
68
.10.1016/j.apm.2017.04.042
18.
Sar Igül
,
M.
,
2019
, “
Internal Resonance of Axially Moving Beams With Masses”. Iranian J. Science and Technology
,”
Trans. Mech. Eng.
,
43
(
1
), pp.
1
16
.10.1007/s40997-017-0109-x
19.
Pham
,
P.-T.
, and
Hong
,
K.-S.
,
2020
, “
Dynamic Models of Axially Moving Systems: A Review
,”
Nonlinear Dyn.
,
100
(
1
), pp.
315
349
.10.1007/s11071-020-05491-z
20.
Shabana
,
A.
,
2020
,
Dynamics of Multibody Systems
,
Cambridge University Press
, Cambridge, UK.
21.
Kerkkänen
,
K. S.
,
Garcia-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
(
3
), pp.
239
256
.10.1007/s11071-006-7749-5
22.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
(
3
), pp.
461
487
.10.1016/j.jsv.2008.04.019
23.
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2013
, “
A Lagrange–Eulerian Formulation of an Axially Moving Beam Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
343
358
.10.1007/s11044-013-9350-2
24.
Nachbagauer
,
K.
,
2014
, “
State of the Art of Ancf Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.10.1007/s11831-014-9117-9
25.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2019
, “
Analysis of High-Frequency Ancf Modes: Navier–Stokes Physical Damping and Implicit Numerical Integration
,”
Acta Mech.
,
230
(
7
), pp.
2581
2605
.10.1007/s00707-019-02409-8
26.
Irschik
,
H.
, and
Holl
,
H.
,
2002
, “
The Equations of Lagrange Written for a Non-Material Volume
,”
Acta Mech.
,
153
(
3–4
), pp.
231
248
.10.1007/BF01177454
27.
Sinwel
,
A.
, and
Gerstmayr
,
J.
,
2010
, “
Modelling an Axially Moving Beam Using the Absolute Nodal Coordinate Formulation
,”
Proceedings of Seventh International Conference on Engineering Computational Technology
, Vol.
112
,
Civil Comp Press
,
Stirlingshire
, pp.
604
609
.
28.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
.10.1007/s11044-010-9242-7
29.
Peng
,
Y.
,
Wei
,
Y.
, and
Zhou
,
M.
,
2017
, “
Efficient Modeling of Cable-Pulley System With Friction Based on Arbitrary-Lagrangian-Eulerian Approach
,”
Appl. Math. Mech.
,
38
(
12
), pp.
1785
1802
.10.1007/s10483-017-2284-8
30.
Escalona
,
J. L.
,
2017
, “
An Arbitrary Lagrangian–Eulerian Discretization Method for Modeling and Simulation of Reeving Systems in Multibody Dynamics
,”
Mech. Mach. Theory
,
112
, pp.
1
21
.10.1016/j.mechmachtheory.2017.01.014
31.
Liu
,
J.-P.
,
Cheng
,
Z.-B.
, and
Ren
,
G.-X.
,
2018
, “
An Arbitrary Lagrangian Eulerian Formulation of a Geometrically Exact Timoshenko Beam Running Through a Tube
,”
Acta Mech.
,
229
(
8
), pp.
3161
3188
.10.1007/s00707-018-2161-z
32.
Winkler
,
R.
, and
Gerstmayr
,
J.
,
2017
, “
Cables With Transported Discrete Mass-Points
,”
MOSS - Symposium on Mechanics of Slender Structures
,
Universidad de Extremadura
,
Badajoz
.
33.
Ntarladima
,
K.
,
Pieber
,
M.
, and
Gerstmayr
,
J.
,
2021
, “
Investigation of the Stability of Axially Moving Beams With Discrete Masses
,”
ASME Paper No. IDETC/CIE2021.
34.
Zhou
,
K.
,
Ni
,
Q.
,
Chen
,
W.
,
Dai
,
H.
,
Hagedorn
,
P.
, and
Wang
,
L.
,
2021
, “
Static Equilibrium Configuration and Nonlinear Dynamics of Slightly Curved Cantilevered Pipe Conveying Fluid
,”
J. Sound Vib.
,
490
, p.
115711
.10.1016/j.jsv.2020.115711
35.
Semler
,
C.
,
Li
,
G. X.
, and
Paı¨Doussis
,
M. P.
,
1994
, “
The Non-Linear Equations of Motion of Pipes Conveying Fluid
,”
J. Sound Vib.
,
169
(
5
), pp.
577
599
.10.1006/jsvi.1994.1035
36.
Gerstmayr
,
J.
,
2021
, “
Exudyn—Flexible Multibody Dynamics Systems With Python and C++
,” accessed Aug. 31, 2021, https://github.com/jgerstmayr/EXUDYN
37.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
,
van Mulbregt
,
P.
,
Vijaykumar
,
A.
,
Bardelli
,
A. P.
,
Rothberg
,
A.
,
Hilboll
,
A.
,
Kloeckner
,
A.
,
Scopatz
,
A.
,
Lee
,
A.
,
Rokem
,
A.
,
Woods
,
C. N.
,
Fulton
,
C.
,
Masson
,
C.
,
Häggström
,
C.
,
Fitzgerald
,
C.
,
Nicholson
,
D. A.
,
Hagen
,
D. R.
,
Pasechnik
,
D. V.
,
Olivetti
,
E.
,
Martin
,
E.
,
Wieser
,
E.
,
Silva
,
F.
,
Lenders
,
F.
,
Wilhelm
,
F.
,
Young
,
G.
,
Price
,
G. A.
,
Ingold
,
G.-L.
,
Allen
,
G. E.
,
Lee
,
G. R.
,
Audren
,
H.
,
Probst
,
I.
,
Dietrich
,
J. P.
,
Silterra
,
J.
,
Webber
,
J. T.
,
Slavič
,
J.
,
Nothman
,
J.
,
Buchner
,
J.
,
Kulick
,
J.
,
Schönberger
,
J. L.
,
de Miranda Cardoso
,
J. V.
,
Reimer
,
J.
,
Harrington
,
J.
,
Rodríguez
,
J. L. C.
,
Nunez-Iglesias
,
J.
,
Kuczynski
,
J.
,
Tritz
,
K.
,
Thoma
,
M.
,
Newville
,
M.
,
Kümmerer
,
M.
,
Bolingbroke
,
M.
,
Tartre
,
M.
,
Pak
,
M.
,
Smith
,
N. J.
,
Nowaczyk
,
N.
,
Shebanov
,
N.
,
Pavlyk
,
O.
,
Brodtkorb
,
P. A.
,
Lee
,
P.
,
McGibbon
,
R. T.
,
Feldbauer
,
R.
,
Lewis
,
S.
,
Tygier
,
S.
,
Sievert
,
S.
,
Vigna
,
S.
,
Peterson
,
S.
,
More
,
S.
,
Pudlik
,
T.
,
Oshima
,
T.
,
Pingel
,
T. J.
,
Robitaille
,
T. P.
,
Spura
,
T.
,
Jones
,
T. R.
,
Cera
,
T.
,
Leslie
,
T.
,
Zito
,
T.
,
Krauss
,
T.
,
Upadhyay
,
U.
,
Halchenko
,
Y. O.
, and
Vázquez-Baeza
,
Y.
, and
SciPy 1.0 Contributors
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
38.
Stangl
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), pp.
1
8
.10.1115/1.3124091
You do not currently have access to this content.