Abstract

To physically assist workers in reducing musculoskeletal strain or to develop motor skills for patients with neuromuscular disabilities, recent research has focused on exoskeletons. Designing exoskeletons is challenging due to the complex human geometric structure, the human-exoskeleton wrench interaction, the kinematic constraints, and the selection of power source characteristics. This study concentrates on modeling a 3D multibody upper-limb human-exoskeleton, developing a procedure of analyzing optimal assistive torque profiles, and optimizing the passive mechanism features for desired tasks. The optimization objective is minimizing the human joint torques. Differential-algebraic equations (DAEs) of motion have been generated and solved to simulate the complex closed-loop multibody dynamics. Three different tasks have been considered, which are common in industrial environments: object manipulation, over-head work, and static pointing. The resulting assistive exoskeleton's elevation joint torque profile decreases the specific task's human shoulder torque in computer simulations. The exoskeleton is not versatile or optimal for different dynamic tasks since the passive mechanism produces a specific torque for a given elevation angle. We concluded that designing a fully passive exoskeleton for a wide range of dynamic applications is impossible.

References

1.
Luime
,
J. J.
,
Koes
,
B. W.
,
Hendriksen
,
I. J.
,
Burdorf
,
A.
,
Verhagen
,
A. P.
,
Miedema
,
H. S.
, and
Verhaar
,
J. A.
,
2004
, “
Prevalence and Incidence of Shoulder Pain in the General Population; a Systematic Review
,”
Scandinavian J. Rheumatol.
,
33
(
2
), pp.
73
81
.10.1080/03009740310004667
2.
Tahmid
,
S.
,
Yang
,
J.
, and
Font-Llagunes
,
J. M.
,
2019
, “
Review of Models and Robotic Devices for Stroke Survivors' Upper Extremity Rehabilitation
,”
ASME
Paper No. DETC2019-97223.10.1115/DETC2019-97223
3.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071006
.10.1115/1.4027284
4.
Ghannadi
,
B.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2018
, “
Upper Extremity Rehabilitation Robots: A Survey
,”
In Handbook of Biomechatronics
, Chap. 9,
Elsevier
, San Diego, CA, pp.
319
353
.
5.
Kiguchi
,
K.
,
Iwami
,
K.
,
Yasuda
,
M.
,
Watanabe
,
K.
, and
Fukuda
,
T.
,
2003
, “
An Exoskeletal Robot for Human Shoulder Joint Motion Assist
,”
IEEE/ASME Trans. Mechatronics
,
8
(
1
), pp.
125
135
.10.1109/TMECH.2003.809168
6.
Xu
,
K.
,
Zhao
,
J.
,
Qiu
,
D.
, and
Wang
,
Y.
,
2014
, “
A Pilot Study of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041011
.10.1115/1.4027760
7.
Sylla
,
N.
,
Bonnet
,
V.
,
Colledani
,
F.
, and
Fraisse
,
P.
,
2014
, “
Ergonomic Contribution of ABLE Exoskeleton in Automotive Industry
,”
Int. J. Ind. Ergon.
,
44
(
4
), pp.
475
481
.10.1016/j.ergon.2014.03.008
8.
Otten
,
A.
,
Voort
,
C.
,
Stienen
,
A.
,
Aarts
,
R.
,
Van Asseldonk
,
E.
, and
Van Der Kooij
,
H.
,
2015
, “
LIMPACT:A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2285
2298
.10.1109/TMECH.2014.2375272
9.
Doyle
,
M. C.
,
2017
, “Adaptive Arm Support Systems and Methods for Use,” U.S. Patent No. 9,205,017.8.
10.
Genani
,
G.
,
2018
, “Device with Improved Actuating Means and Method for Use Thereof,” U.S. Patent No. 10,071,476.
11.
Giovanelli
,
Y.
, and
Vareille
,
A.
,
2018
, “
Dispositif D'assistance Physique Pour Lutter Contre Les Troubles Musculosquelettiques
,”
Arch. Des Maladies Prof. L'Environ.
,
79
(
3
), p.
351
.10.1016/j.admp.2018.03.356
12.
Van Engelhoven
,
L.
,
Poon
,
N.
,
Kazerooni
,
H.
,
Ban
,
A.
,
Rempel
,
D.
, and
Harris-Adamson
,
C.
,
2018
, “
Evaluation of an Adjustable Support Shoulder Exoskeleton on Static and Dynamic Overhead Tasks
,”
Proceedings of the Human Factors and Ergonomics Society
, Vol.
1
,
SAGE Publications
, Los Angeles, CA, pp.
804
808
.
13.
Angold
,
R.
,
Lubin
,
J.
,
Solano
,
M.
,
Paretich
,
C.
, and
Mastaler
,
T.
,
2016
, “Exoskeleton and Method of Providing an Assistive Torque to an Arm of a Wearer,” U.S. Patent No. 10,058,994.
14.
Luque
,
E. P.
,
Högberg
,
D.
,
Iriondo
,
A.
, and
Thorvald
,
P.
,
2019
, “
Evaluation of the Use of Exoskeletons in the Range of Motion of Workers
,” Master thesis,
University of Skövde
, Skövde, Sweden.
15.
Gopura
,
R. A.
,
Bandara
,
D. S.
,
Kiguchi
,
K.
, and
Mann
,
G. K.
,
2016
, “
Developments in Hardware Systems of Active Upper-Limb Exoskeleton Robots: A Review
,”
Rob. Auton. Syst.
,
75
, pp.
203
220
.10.1016/j.robot.2015.10.001
16.
Perry
,
J. C.
,
Powell
,
J. M.
, and
Rosen
,
J.
,
2009
, “
Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
175
191
.10.1155/2009/758631
17.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
18.
Galinski
,
D.
,
Sapin
,
J.
, and
Dehez
,
B.
,
2013
, “
Optimal Design of an Alignment-Free two-DOF Rehabilitation Robot for the Shoulder Complex
,”
IEEE International Conference on Rehabilitation Robotics
,
IEEE
, Seattle, WA, June 24–26, pp.
1
7
.10.1109/ICORR.2013.6650502
19.
Manns
,
P.
,
Sreenivasa
,
M.
,
Millard
,
M.
, and
Mombaur
,
K.
,
2017
, “
Motion Optimization and Parameter Identification for a Human and Lower Back Exoskeleton Model
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1564
1570
.10.1109/LRA.2017.2676355
20.
Blanchet
,
L.
,
Achiche
,
S.
,
Docquier
,
Q.
,
Fisette
,
P.
, and
Raison
,
M.
,
2021
, “
A Procedure to Optimize the Geometric and Dynamic Designs of Assistive Upper Limb Exoskeletons
,”
Multibody Syst. Dyn.
,
51
(
2
), pp.
221
245
.10.1007/s11044-020-09766-6
21.
Shi
,
Y.
, and
Peng
,
Q.
,
2018
, “
Improved Benchmarking Method Using Kinematics Analysis in Design of an Upper Limb Exoskeleton Rehabilitation Device
,”
ASME
Paper No. DETC2018-85465.10.1115/DETC2018-85465
22.
Sarac
,
M.
,
Solazzi
,
M.
,
Sotgiu
,
E.
,
Bergamasco
,
M.
, and
Frisoli
,
A.
,
2017
, “
Design and Kinematic Optimization of a Novel Underactuated Robotic Hand Exoskeleton
,”
Meccanica
,
52
(
3
), pp.
749
761
.10.1007/s11012-016-0530-z
23.
Zhou
,
L.
,
Li
,
Y.
, and
Bai
,
S.
,
2017
, “
A Human-Centered Design Optimization Approach for Robotic Exoskeletons Through Biomechanical Simulation
,”
Rob. Auton. Syst.
,
91
, pp.
337
347
.10.1016/j.robot.2016.12.012
24.
Hayashi
,
Y.
,
Dubey
,
R.
, and
Kiguchi
,
K.
,
2011
, “
Torque Optimization for a 7DOF Upper-Limb Power-Assist Exoskeleton Robot
,”
IEEE Workshop on Robotic Intelligence in Informationally Structured Space
,
IEEE
, Paris, France, Apr. 11–15, pp.
49
54
.10.1109/RIISS.2011.5945786
25.
Aoustin
,
Y.
, and
Formalskii
,
A. M.
,
2018
, “
Walking of Biped With Passive Exoskeleton: Evaluation of Energy Consumption
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
71
96
.10.1007/s11044-017-9602-7
26.
Holzbaur
,
K. R.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.10.1007/s10439-005-3320-7
27.
Wu
,
G.
,
Van Der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X. G.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
28.
Dumas
,
R.
,
Chèze
,
L.
, and
Verriest
,
J. P.
,
2007
, “
Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.10.1016/j.jbiomech.2006.02.013
29.
Naf
,
M. B.
,
Junius
,
K.
,
Rossini
,
M.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation
,”
ASME Appl. Mech. Rev.
,
70
(
5
), p.
050802
.10.1115/1.4042523
30.
Inkol
,
K. A.
, and
McPhee
,
J.
,
2020
, “
Assessing Control of Fixed-Support Balance Recovery in Wearable Lower-Limb Exoskeletons Using Multibody Dynamic Modelling
,”
Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
IEEE
, Vol.
2020
, Nov. New York, pp.
54
60
.
31.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.10.1080/10255840008908000
32.
Roetenberg
,
D.
,
2006
, “Inertial and Magnetic Sensing of Human Motion,” These de doctorat,
University of Twente
, Enschede, The Netherlands.
33.
Phadke
,
V.
,
Braman
,
J. P.
,
LaPrade
,
R. F.
, and
Ludewig
,
P. M.
,
2011
, “
Comparison of Glenohumeral Motion Using Different Rotation Sequences
,”
J. Biomech.
,
44
(
4
), pp.
700
705
.10.1016/j.jbiomech.2010.10.042
34.
McFarland
,
T. C.
,
McDonald
,
A. C.
,
Whittaker
,
R. L.
,
Callaghan
,
J. P.
, and
Dickerson
,
C. R.
,
2022
, “
Level of Exoskeleton Support Influences Shoulder Elevation, External Rotation and Forearm Pronation During Simulated Work Tasks in Females
,”
Appl. Ergonom.
,
98
, p.
103591
.10.1016/j.apergo.2021.103591
35.
Nasr
,
A.
,
He
,
J.
,
Jiang
,
N.
, and
McPhee
,
J.
,
2020
, “
Activation Torque Estimation of Muscles by Forward Neural Networks (Forward-MuscleNET) for sEMG-Based Control of Assistive Robots
,”
Proceedings of the Seventh International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)
, Virtual, Online, p.
146
.
36.
Nasr
,
A.
, and
McPhee
,
J.
,
2020
, “
Control-Oriented Muscle Torque (COMT) Model for EMG-Based Control of Assistive Robots
,”
Proceedings of the Seventh International Conference of Control, Dynamic Systems, and Robotics (CDSR'20)
, Virtual, Online, p.
144
.
37.
Sone
,
J.
,
Inoue
,
R.
,
Yamada
,
K.
,
Nagae
,
T.
,
Fujita
,
K.
, and
Sato
,
M.
,
2008
, “
Development of a Wearable Exoskeleton Haptic Interface Device
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
4
), p. 041009.10.1115/1.3009670
38.
Nasr
,
A.
,
Laschowski
,
B.
, and
McPhee
,
J.
,
2021
, “
Myoelectric Control of Robotic Leg Prostheses and Exoskeletons: A Review
,”
ASME
Paper No. DETC2021–69203.10.1115/DETC2021–69203
39.
Nasr
,
A.
,
Bell
,
S.
,
He
,
J.
,
Whittaker
,
R. L.
,
Jiang
,
N.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2021
, “
MuscleNET: Mapping Electromyography to Kinematic and Dynamic Biomechanical Variables
,”
J. Neural Eng.
,
18
(
4
), p.
0460d3
.10.1088/1741-2552/ac1adc
You do not currently have access to this content.