Abstract

This work describes an alternative formulation of a system of nonlinear state-dependent delay differential equations (SDDDEs), which governs the coupled axial-torsional vibrations of a 2 DOF drillstring model with a realistic representation of polycrystalline diamond compact (PDC) bits. The regenerative effect associated with the complex cutter layout for such bits can introduce up to 100 state-dependent delays in the equations of motion. This large number of state-dependent delays renders the computational efficiency of conventional solution strategies unacceptable. The regeneration of the bottom-hole surface can alternatively be described by the bit trajectory function, whose evolution is governed by a partial differential equation (PDE). Thus the original system of SDDDEs can be replaced by a nonlinear coupled system of a PDE and ordinary differential equations (ODEs). Via the application of the Galerkin Method, this system of PDE-ODEs is transformed into a system of coupled ODEs, which can readily be solved. The algorithm is further extended to perform a linear stability analysis of the bit motion. The resulting stability boundaries are verified with time-domain simulations. The reported algorithm could, in principle, be applied to a more realistic drillstring model, which may lead to an in-depth understanding of the mitigation of self-excited vibrations through PDC bit designs.

References

1.
Jain
,
J. R.
,
Ledgerwood
,
L. W.
, III
Hoffmann
,
O. J.
, and
Fuselier
,
D. M.
,
2011
, “
Mitigation of Torsional Stick-Slip Vibrations in Oil Well Drilling Through PDC Bit Design: Putting Theories to the Test
,”
SPE Annual Technical Conference and Exhibition
, Society of Petroleum Engineers, Denver, CO, Oct., pp.
1
14
, Paper No. SPE 146561.10.2118/146561-MS
2.
Chen
,
S.
,
Wisinger
,
J.
,
Dunbar
,
B.
, and
Propes
,
C.
,
2020
, “
Identification and Mitigation of Friction- and Cutting Action-Induced Stick-Slip Vibrations With Pdc Bits
,”
SPE Drill Completion
,
35
(
04
), pp.
576
587
.10.2118/199639-PA
3.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2007
, “
A Simplified Model to Explore the Root Cause of Stick-Slip Vibrations in Drilling Systems With Drag Bits
,”
J. Sound Vib.
,
305
(
3
), pp.
432
456
.10.1016/j.jsv.2007.04.015
4.
Detournay
,
E.
, and
Defourny
,
P.
,
1992
, “
A Phenomenological Model for the Drilling Action of Drag Bits
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
29
(
1
), pp.
13
23
.10.1016/0148-9062(92)91041-3
5.
Depouhon
,
A.
, and
Detournay
,
E.
,
2014
, “
Instability Regimes and Self-Excited Vibrations in Deep Drilling Systems
,”
J. Sound Vib.
,
333
(
7
), pp.
2019
2039
.10.1016/j.jsv.2013.10.005
6.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2004
, “
Self-Excited Stick-Slip Oscillations of Drill Bits
,”
Comptes Rendus Mecanique
,
332
(
8
), pp.
619
626
.10.1016/j.crme.2004.01.016
7.
Germay
,
C.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
, and
Sepulchre
,
R.
,
2009
, “
Nonlinear Drillstring Dynamics Analysis
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
2
), pp.
527
553
.10.1137/060675848
8.
Besselink
,
B.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p. 021006.10.1115/1.4002386
9.
Nandakumar
,
K.
, and
Wiercigroch
,
M.
,
2013
, “
Stability Analysis of a State Dependent Delayed, Coupled Two DOF Model of Drill-String Vibration
,”
J. Sound Vib.
,
332
(
10
), pp.
2575
2592
.10.1016/j.jsv.2012.12.020
10.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Multiple Regenerative Effects in Cutting Process and Nonlinear Oscillations
,”
Int. J. Dyn. Control
,
2
(
1
), pp.
86
101
.10.1007/s40435-014-0078-5
11.
Besselink
,
B.
,
Vromen
,
T.
,
Kremers
,
N. A. H.
, and
van de Wouw
,
N.
,
2016
, “
Analysis and Control of Stick-Slip Oscillations in Drilling Systems
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1582
1593
.10.1109/TCST.2015.2502898
12.
Gupta
,
S. K.
, and
Wahi
,
P.
,
2016
, “
Global Axial–Torsional Dynamics During Rotary Drilling
,”
J. Sound Vib.
,
375
, pp.
332
352
.10.1016/j.jsv.2016.04.021
13.
Germay
,
C.
,
Denoel
,
V.
, and
Detournay
,
E.
,
2009
, “
Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems
,”
J. Sound Vib.
,
325
(
1–2
), pp.
362
381
.10.1016/j.jsv.2009.03.017
14.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Motions of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn
,
72
(
1–2
), pp.
61
77
.10.1007/s11071-012-0690-x
15.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Coupled Axial-Torsional Dynamics in Rotary Drilling With State-Dependent Delay: Stability and Control
,”
Nonlinear Dyn.
,
78
(
3
), pp.
1891
1906
.10.1007/s11071-014-1567-y
16.
Liu
,
X.
,
Long
,
X.
,
Zheng
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2020
, “
Spatial-Temporal Dynamics of a Drill String With Complex Time-Delay Effects: Bit Bounce and Stick-Slip Oscillations
,”
Int. J. Mech. Sci.
,
170
, p.
105338
.10.1016/j.ijmecsci.2019.105338
17.
Aarsnes
,
U. J. F.
, and
Aamo
,
O. M.
,
2016
, “
Linear Stability Analysis of Self-Excited Vibrations in Drilling Using an Infinite Dimensional Model
,”
J. Sound Vib.
,
360
, pp.
239
259
.10.1016/j.jsv.2015.09.017
18.
Aarsnes
,
U. J. F.
, and
de Wouw
,
N.
,
2018
, “
Dynamics of a Distributed Drill String System: Characteristic Parameters and Stability Maps
,”
J. Sound Vib.
,
417
, pp.
376
412
.10.1016/j.jsv.2017.12.002
19.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
State-Dependent Delay Influenced Drill-String Oscillations and Stability Analysis
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051008
.10.1115/1.4027958
20.
Gupta
,
S. K.
, and
Wahi
,
P.
,
2018
, “
Tuned Dynamics Stabilizes an Idealized Regenerative Axial-Torsional Model of Rotary Drilling
,”
J. Sound Vib.
,
412
, pp.
457
473
.10.1016/j.jsv.2017.08.044
21.
Zheng
,
X.
,
Agarwal
,
V.
,
Liu
,
X.
, and
Balachandran
,
B.
,
2020
, “
Nonlinear Instabilities and Control of Drill-String Stick-Slip Vibrations With Consideration of State-Dependent Delay
,”
J. Sound Vib.
,
473
, p.
115235
.10.1016/j.jsv.2020.115235
22.
Tian
,
K.
,
Ganesh
,
R.
, and
Detournay
,
E.
,
2020
, “
Influence of Bit Design on the Stability of a Rotary Drilling System
,”
Nonlinear Dyn.
,
100
(
1
), pp.
51
75
.10.1007/s11071-020-05537-2
23.
Tian
,
K.
, and
Detournay
,
E.
,
2021
, “
Influence of Pdc Bit Cutter Layout on Stick–Slip Vibrations of Deep Drilling Systems
,”
J. Pet. Sci. Eng.
,
206
p.
109005
.10.1016/j.petrol.2021.109005
24.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2008
, “
Self-Interrupted Regenerative Metal Cutting in Turning
,”
Int. J. Non-Linear Mech.
,
43
(
2
), pp.
111
123
.10.1016/j.ijnonlinmec.2007.10.010
25.
Zhang
,
H.
, and
Detournay
,
E.
,
2020
, “
An Alternative Formulation for Modeling Self-Excited Oscillations of Rotary Drilling Systems
,”
J. Sound Vib.
,
474
, p.
115241
.10.1016/j.jsv.2020.115241
26.
Zhang
,
H.
, and
Detournay
,
E.
,
2021
, “
A High-Dimensional Model to Study the Self-Excited Oscillations of Rotary Drilling Systems
,” Communications in Nonlinear Science and Numerical Simulation (submitted).
You do not currently have access to this content.