Abstract

Heat-exchanger tubes subjected to cross-flow experience a fluid elastic instability (FEI) at a critical flow velocity. Baffle plates are often used to provide additional stiffness to long tubes. A cladding is provided between the baffle plates and the tubes to allow for thermal expansion, and the cladding acts like a soft spring. In this paper, we study the contact between the cladding and the tube when the stiffness of the cladding is asymmetric. The tube is modeled as a cantilever Euler–Bernoulli beam, and the fluid forces are represented using an added mass, added damping and a time-delayed displacement term. This results in a partial delay differential equation model for the tube vibration. Using the Galerkin approximation and considering only a single mode, a delay differential equation (DDE) model is developed. However, due to the presence of the delay, the single mode model is also infinite-dimensional. This model contains sign function nonlinearity due to the asymmetry in the contact stiffness of the cladding. The DDE model is essentially nonlinear—that is, no linear approximation exists. However, its solutions are scalable: if q(t) is a solution, then αq(t) is also a solution for any α>0. By exploiting this scalability property of solutions, we use Lyapunov-like exponents to probe the stability of the nonlinear DDE. Further, by numerical continuation, we numerically demonstrate the existence of periodic solutions on the stability boundary. Our stability charts will be beneficial to the designers of heat-exchangers.

References

1.
Anspaugh
,
L. R.
,
Catlin
,
R. J.
, and
Goldman
,
M.
,
1988
, “
The Global Impact of the Chernobyl Reactor Accident
,”
Science
,
242
(
4885
), pp.
1513
1519
.10.1126/science.3201240
2.
Koo
,
Y. H.
,
Yang
,
Y. S.
, and
Song
,
K. W.
,
2014
, “
Radioactivity Release From the Fukushima Accident and Its Consequences: A Review
,”
Prog. Nucl. Energy
,
74
, pp.
61
70
.10.1016/j.pnucene.2014.02.013
3.
Knudsen
,
J.
, and
Massih
,
A. R.
,
2000
, “
Vibro-Impact Dynamics of a Periodically Forced Beam
,”
ASME J. Pressure Vessel Technol.
,
122
(
2
), pp.
210
221
.10.1115/1.556175
4.
Païdoussis
,
M. P.
,
Price
,
S. J.
, and
De Langre
,
E.
,
2010
,
Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
,
Cambridge University Press
,
New York
.
5.
Weaver
,
D. S.
,
Ziada
,
S.
,
Au-Yang
,
M. K.
,
Chen
,
S. S.
,
Paı¨doussis
,
M. P.
, and
Pettigrew
,
M. J.
,
2000
, “
Flow-Induced Vibrations in Power and Process Plant Components—Progress and Prospects
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
339
348
.10.1115/1.556190
6.
Granger
,
S.
, and
Païdoussis
,
M. P.
,
1996
, “
An Improvement to the Quasi-Steady Model With Application to Cross-Flow-Induced Vibration of Tube Arrays
,”
J. Fluid Mech.
,
320
(
-1
), pp.
163
184
.10.1017/S0022112096007495
7.
Li
,
H.
, and
Mureithi
,
N.
,
2017
, “
Development of a Time Delay Formulation for Fluidelastic Instability Model
,”
J. Fluids Struct.
,
70
, pp.
346
359
.10.1016/j.jfluidstructs.2017.01.020
8.
Mahon
,
J.
, and
Meskell
,
C.
,
2013
, “
Estimation of the Time Delay Associated With Damping Controlled Fluidelastic Instability in a Normal Triangular Tube Array
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p. 030903.10.1115/1.4024144
9.
Desai
,
A.
,
Vourganti
,
V.
, and
Vyasarayani
,
C. P.
,
2020
, “
A Note on Damping in Heat-Exchanger Tubes Subjected to Cross-Flow
,”
Int. J. Dyn. Control
,
8
(
2
), pp.
352
360
.10.1007/s40435-019-00590-1
10.
Weaver
,
D. S.
, and
Grover
,
L. K.
,
1978
, “
Cross-Flow Induced Vibrations in a Tube Bank–Turbulent Buffeting and Fluid Elastic Instability
,”
J. Sound Vib.
,
59
(
2
), pp.
277
294
.10.1016/0022-460X(78)90506-0
11.
Weaver
,
D. S.
, and
El-Kashlan
,
M.
,
1981
, “
The Effect of Damping and Mass Ratio on the Stability of a Tube Bank
,”
J. Sound Vib.
,
76
(
2
), pp.
283
294
.10.1016/0022-460X(81)90355-2
12.
Mitra
,
D. R.
,
2005
,
Fluid-Elastic Instability in Tube Arrays Subjected to Air-Water and Steam-Water Cross-Flow
,
University of California
,
Los Angeles, CA
.
13.
Knudsen
,
J.
,
2001
, “
Vibro-impact dynamics of fretting wear
,” Ph.D., thesis,
Luleå University of Technology
, Sweden.
14.
Price
,
S. J.
,
1995
, “
A Review of Theoretical Models for Fluidelastic Instability of Cylinder Arrays in Cross-Flow
,”
J. Fluids Struct.
,
9
(
5
), pp.
463
518
.10.1006/jfls.1995.1028
15.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
16.
Ibrahim
,
R. A.
,
2011
, “
Mechanics of Pipes Conveying Fluids–Part ii: Applications and Fluidelastic Problems
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p. 024001.10.1115/1.4001270
17.
Païdoussis
,
M. P.
, and
Li
,
G. X.
,
1992
, “
Cross-Flow-Induced Chaotic Vibrations of Heat-Exchanger Tubes Impacting on Loose Supports
,”
J. Sound Vib.
,
152
(
2
), pp.
305
326
.10.1016/0022-460X(92)90363-3
18.
Yau
,
C. H.
,
Bajaj
,
A. K.
, and
Nwokah
,
O. D. I.
,
1995
, “
Active Control of Chaotic Vibration in a Constrained Flexible Pipe Conveying Fluid
,”
J. Fluids Struct.
,
9
(
1
), pp.
99
122
.10.1006/jfls.1995.1005
19.
Wang
,
L.
,
Dai
,
H. L.
, and
Han
,
Y. Y.
,
2012
, “
Cross-Flow-Induced Instability and Nonlinear Dynamics of Cylinder Arrays With Consideration of Initial Axial Load
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1043
1051
.10.1007/s11071-011-0047-x
20.
Wang
,
L.
, and
Ni
,
Q.
,
2010
, “
Hopf Bifurcation and Chaotic Motions of a Tubular Cantilever Subject to Cross Flow and Loose Support
,”
Nonlinear Dyn.
,
59
(
1–2
), pp.
329
338
.10.1007/s11071-009-9542-8
21.
Vourganti
,
V.
,
Kandala
,
S. S.
,
Meesala
,
V. C.
, and
Vyasarayani
,
C. P.
,
2020
, “
Supercritical and Subcritical Hopf Bifurcations in a Delay Differential Equation Model of a Heat-Exchanger Tube Under Cross-Flow
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
2
), p.
021007
.10.1115/1.4045635
22.
Vourganti
,
V.
,
Desai
,
A.
,
Samukham
,
S.
, and
Vyasarayani
,
C. P.
,
2020
, “
Effect of Nonlinear Cladding Stiffness on the Stability and Hopf Bifurcation of a Heat-Exchanger Tube Subject to Cross-Flow
,”
Meccanica
,
55
(
1
), pp.
49
68
.10.1007/s11012-019-01114-z
23.
Koto
,
T.
,
2004
, “
Method of Lines Approximations of Delay Differential Equations
,”
Comput. Math. Appl.
,
48
(
1–2
), pp.
45
59
.10.1016/j.camwa.2004.01.003
24.
Marathe
,
A.
, and
Chatterjee
,
A.
,
2006
, “
Asymmetric Mathieu Equations
,”
Proc. R. Soc. A.
,
462
(
2070
), pp.
1643
1659
.10.1098/rspa.2005.1632
25.
Balija
,
S. K.
,
Biswas
,
S.
, and
Chatterjee
,
A.
,
2018
, “
Stability Aspects of the Hayes Delay Differential Equation With Scalable Hysteresis
,”
Nonlinear Dyn.
,
93
(
3
), pp.
1377
1393
.10.1007/s11071-018-4266-2
26.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
You do not currently have access to this content.