Abstract

A recently published treatment of nonredundant manipulator kinematics and dynamics on differentiable manifolds is extended to kinematically redundant manipulators. Analysis at the configuration level shows that forward kinematics and dynamics of redundant manipulators are identical to that for nonredundant manipulators. The manifold-based inverse kinematics formulation that is presented for redundant manipulators, in contrast, yields parameterizations of set-valued inverse kinematic mappings at the configuration level, where sharper results are obtained than those presented in the literature using velocity formulations. Explicit expressions are derived for set-valued inverse kinematic mappings for both serial and nonserial (called compound) kinematically redundant manipulators, as functions of vectors of arbitrary parameters. Parameterizations are presented for both manipulator regular configuration manifolds and self-motion manifolds, the latter comprised of sets of inputs that map into the same output. It is shown that kinematically redundant configuration manifolds and self-motion differentiable manifolds are distinctly different and play complementary roles in redundant manipulator kinematics. Computational methods are presented for evaluation of set-valued inverse kinematic mappings, without problem-dependent ad hoc analytical manipulations. Redundant serial and compound manipulator examples are presented to illustrate computation of set-valued inverse kinematic mappings and the use of self-motion manifold mappings in obstacle avoidance applications. Differentiation of configuration level inverse mappings yields inverse velocity and acceleration mappings as functions of time-dependent arbitrary parameters that play a central role in manipulator dynamics and control.

References

1.
Haug
,
E. J.
,
2022
, “
Manipulator Kinematics and Dynamics on Differentiable Manifolds: Part I Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
2
), p.
021002
.10.1115/1.4052652
2.
Haug
,
E. J.
,
2022
, “
Manipulator Kinematics and Dynamics on Differentiable Manifolds: Part II Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
2
), p.
021003
.10.1115/1.4052653
3.
Chiaverine
,
S.
,
Oriolo
,
G.
, and
Maciejewski
,
A. A.
,
2016
,
Redundant Robots
,
Springer Handbook on Robotics
, Springer-Verlag, Berlin, pp.
221
242
.
4.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Manipulators
,”
J. Intel. Robot Sys.
,
86
(
2
), pp.
175
198
.10.1007/s10846-016-0430-4
5.
Muller
,
A.
, and
Hufnagel
,
T.
,
2012
, “
Model-Based Control of Redundantly Actuated Parallel Manipulators in Redundant Coordinates
,”
Rob. Auton. Sys.
,
60
(
4
), pp.
563
571
.10.1016/j.robot.2011.11.014
6.
Burdick
,
J. W.
,
1989
, “
On the Inverse Kinematics of Redundant Manipulators: Characterization of the Self-Motion Manifolds
,”
Proceedings of IEEE International Conference on Robot Automation
, Scottsdale AZ, May 14–19, pp.
264
270
.10.1109/ROBOT.1989.99999
7.
Lee
,
S.
, and
Bejczy
,
A. K.
,
1991
, “
Redundant Arm Kinematic Control Based on Parameterization
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Sacramento, CA, Apr. 9–11, pp.
458
465
.10.1109/ROBOT.1991.131621
8.
Luck
,
C. L.
, and
Lee
,
S.
,
1995
, “
Topology-Based Analysis for Redundant Manipulators Under Kinematic Constraints
,”
Proceedings of 34th IEEE Conference on Design and Control
, New Orleans, LA, Dec. 13–15, pp.
1603
1608
.10.1109/CDC.1995.480367
9.
DeMers
,
D.
, and
Kreutz-Delgado
,
K.
,
1996
, “
Canonical Parameterization of Excess Motor Degrees of Freedom With Self-Organizing Maps
,”
IEEE Trans. Neural Networks
,
7
(
1
), pp.
43
55
.10.1109/72.478391
10.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W.-K.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
,
2008
, “
Analytical Inverse Kinematic Computation of 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1131
1142
.10.1109/TRO.2008.2003266
11.
Fari
,
C.
,
Ferreira
,
F.
,
Erlhagen
,
W.
,
Monteiro
,
S.
, and
Bicho
,
E.
,
2018
, “
Position-Based Kinematics Foe 7-DOF Serial Manipulators With Global Configuration Control, Joint Limit, and Singularity Avoidance
,”
Mech. Mach. Theory
,
121
, pp.
317
334
.10.1016/j.mechmachtheory.2017.10.025
12.
Wang
,
Y.
,
Zhao
,
C.
,
Wang
,
X.
,
Zhang
,
P.
, and
Liu
,
H.
,
2021
, “
Inverse Kinematics of 7-DOF Spraying Robot With 4R 3-DOF Non-Spherical Wrist
,”
J. Intel. Rob. Sys.
,
101
(
68
), pp.
1
17
.10.1007/s10846-021-01338-w
13.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.10.1115/1.4038931
14.
Guillemin
,
V.
, and
Pollack
,
A.
,
1974
,
Differential Topology
,
AMS Chelsea Publishing
,
Providence, RI
.
15.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
16.
Mendelson
,
B.
,
1962
,
Introduction to Topology
,
Allyn and Bacon
,
Boston, MA
.
17.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
18.
Hirsch
,
M. W.
,
1976
,
Differential Topology
,
Springer-Verlag
,
New York
.
19.
Jazar
,
R. N.
,
2010
,
Theory of Applied Robotics
,
Springer
,
Boston, MA
.
20.
Peidro
,
A.
,
Reinoso
,
O.
,
Gil
,
A.
,
Marín
,
J. M.
, and
Paya
,
L.
,
2018
, “
A Method Based on the Vanishing of Self-Motion Manifolds to Determine the Collision-Free Workspace of Redundant Robots
,”
Mech. Mach. Theory
,
128
, pp.
84
109
.10.1016/j.mechmachtheory.2018.05.013
21.
Lee
,
H. Y.
, and
Liang
,
C. G.
,
1988
, “
Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mech. Mach. Theory
,
23
(
3
), pp.
219
226
.10.1016/0094-114X(88)90107-3
22.
Haug
,
E. J.
,
2021
, “
Multibody Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
4
), p.
041003
.10.1115/1.4049995
You do not currently have access to this content.