Abstract

In this paper, the time-fractional modified (2 + 1)-dimensional Konopelchenko–Dubrovsky equations have been solved numerically using the Kansa method, in which the multiquadrics is used as radial basis function. To achieve this, a numerical scheme based on finite difference and Kansa method has been proposed. The stability and convergence of the proposed time-discretized scheme are theoretically proven. Also, the solitary wave solutions have been obtained by using Kudryashov technique. The computed results are compared with the exact solutions as well as with the soliton solutions obtained by Kudryashov technique to show the accuracy of the proposed method.

References

1.
Yang
,
X.-J.
,
2019
,
General Fractional Derivatives: Theory, Methods and Applications
,
CRC Press,
Boca Raton, FL.
2.
Saha Ray
,
S.
,
2020
,
Nonlinear Differential Equations in Physics
,
Springer
, Singapore.
3.
Dwivedi
,
K. D.
, and
Singh
,
J.
,
2021
, “
Numerical Solution of Two-Dimensional Fractional-Order Reaction Advection Sub-Diffusion Equation With Finite Difference Fibonacci Collocation Method
,”
Math. Comput. Simul.
,
181
, pp.
38
50
.10.1016/j.matcom.2020.09.008
4.
Veeresha
,
P.
,
Prakasha
,
D.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Singh
,
J.
,
2020
, “
An Efficient Computational Technique for Fractional Model of Generalized Hirota–Satsuma-Coupled Korteweg–de Vries and Coupled Modified Korteweg–de Vries Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
7
), p.
071003
.10.1115/1.4046898
5.
Singh
,
J.
,
Kumar
,
D.
, and
Kumar
,
S.
,
2020
, “
An Efficient Computational Method for Local Fractional Transport Equation Occurring in Fractal Porous Media
,”
Comput. Appl. Math.
,
39
(
3
), pp.
1
10
.10.1007/s40314-020-01162-2
6.
Syam
,
M. I.
,
Anwar
,
M.-N. Y.
,
Yildirim
,
A.
, and
Syam
,
M. M.
,
2019
, “
The Modified Fractional Power Series Method for Solving Fractional Non-Isothermal Reaction–Diffusion Model Equations in a Spherical Catalyst
,”
Int. J. Appl. Comput. Math.
,
5
(
2
), pp.
1
13
.10.1007/s40819-019-0624-0
7.
Sakar
,
M. G.
,
Sald Ir
,
O.
, and
Akgül
,
A.
,
2018
, “
Numerical Solution of Fractional Bratu Type Equations With Legendre Reproducing Kernel Method
,”
Int. J. Appl. Comput. Math.
,
4
(
5
), pp.
1
14
.10.1007/s40819-018-0562-2
8.
Guner
,
O.
,
Bekir
,
A.
, and
Korkmaz
,
A.
,
2017
, “
Tanh-Type and Sech-Type Solitons for Some Space-Time Fractional Pde Models
,”
Eur. Phys. J. Plus
,
132
(
2
), pp.
1
12
.10.1140/epjp/i2017-11370-7
9.
Owyed
,
S.
,
Abdou
,
M.
,
Abdel-Aty
,
A.-H.
, and Saha
Ray
,
S.
,
2019
, “
New Optical Soliton Solutions of Nolinear Evolution Equation Describing Nonlinear Dispersion
,”
Commun. Theor. Phys.
,
71
(
9
), p.
1063
.10.1088/0253-6102/71/9/1063
10.
Atangana
,
A.
, and
Owolabi
,
K. M.
,
2018
, “
New Numerical Approach for Fractional Differential Equations
,”
Math. Modell. Natural Phenom.
,
13
(
1
), p.
3
.10.1051/mmnp/2018010
11.
Saha Ray
,
S.
,
2018
, “
The Time-Splitting Fourier Spectral Method for Riesz Fractional Coupled Schrödinger–Kdv Equations in Plasma Physics
,”
Mod. Phys. Lett. B
,
32
(
28
), p.
1850341
.10.1142/S0217984918503414
12.
Ganji
,
R.
,
Jafari
,
H.
,
Kgarose
,
M.
, and
Mohammadi
,
A.
,
2021
, “
Numerical Solutions of Time-Fractional Klein-Gordon Equations by Clique Polynomials
,”
Alexandria Eng. J.
,
60
(
5
), pp.
4563
4571
.10.1016/j.aej.2021.03.026
13.
Mesgarani
,
H.
,
Rashidnina
,
J.
,
Aghdam
,
Y. E.
, and
Nikan
,
O.
,
2020
, “
The Impact of Chebyshev Collocation Method on Solutions of Fractional Advection–Diffusion Equation
,”
Int. J. Appl. Comput. Math.
,
6
(
5
), pp.
1
13
.10.1007/s40819-020-00903-5
14.
Aghdam
,
Y. E.
,
Safdari
,
H.
,
Azari
,
Y.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2021
, “
Numerical Investigation of Space Fractional Order Diffusion Equation by the Chebyshev Collocation Method of the Fourth Kind and Compact Finite Difference Scheme
,”
Discrete Contin. Dyn. Syst.-S
,
14
(
7
), p.
2025
.10.3934/dcdss.2020402
15.
Ganji
,
R.
, and
Jafari
,
H.
,
2019
, “
A Numerical Approach for Multi-Variable Orders Differential Equations Using Jacobi Polynomials
,”
Int. J. Appl. Comput. Math.
,
5
(
2
), pp.
1
9
.10.1007/s40819-019-0610-6
16.
Ganji
,
R.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2020
, “
A New Approach for Solving Multi Variable Orders Differential Equations With Mittag–Leffler Kernel
,”
Chaos, Solitons Fractals
,
130
, p.
109405
.10.1016/j.chaos.2019.109405
17.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2020
, “
A New Analysis of Fractional Fish Farm Model Associated With Mittag-Leffler-Type Kernel
,”
Int. J. Biomath.
,
13
(
2
), p.
2050010
.10.1142/S1793524520500102
18.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2020
, “
On the Analysis of Vibration Equation Involving a Fractional Derivative With Mittag-Leffler Law
,”
Math. Methods Appl. Sci.
,
43
(
1
), pp.
443
457
.10.1002/mma.5903
19.
Kansa
,
E. J.
,
1990
, “
Multiquadrics-a Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics-ii Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
147
161
.10.1016/0898-1221(90)90271-K
20.
Nikan
,
O.
,
Jafari
,
H.
, and
Golbabai
,
A.
,
2020
, “
Numerical Analysis of the Fractional Evolution Model for Heat Flow in Materials With Memory
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2627
2637
.10.1016/j.aej.2020.04.026
21.
Gupta
,
A.
, and Saha
Ray
,
S.
,
2017
, “
On the Solitary Wave Solution of Fractional Kudryashov–Sinelshchikov Equation Describing Nonlinear Wave Processes in a Liquid Containing Gas Bubbles
,”
Appl. Math. Comput.
,
298
, pp.
1
12
.10.1016/j.amc.2016.11.003
22.
Chen
,
W.
,
Ye
,
L.
, and
Sun
,
H.
,
2010
, “
Fractional Diffusion Equations by the Kansa Method
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1614
1620
.10.1016/j.camwa.2009.08.004
23.
Lyu
,
X.
, and
Gu
,
W.
,
2019
, “
Solitons for the Modified (2 + 1) -Dimensional Konopelchenko–Dubrovsky Equations
,”
Adv. Differ. Equat.
,
2019
(
1
), pp.
1
18
.10.1186/s13662-019-2370-3
24.
Konopelchenko
,
B.
, and
Dubrovsky
,
V.
,
1984
, “
Some New Integrable Nonlinear Evolution Equations in 2+ 1 Dimensions
,”
Phys. Lett. A
,
102
(
1–2
), pp.
15
17
.10.1016/0375-9601(84)90442-0
25.
Khater
,
M. M.
,
Lu
,
D.
, and
Attia
,
R. A.
,
2019
, “
Lump Soliton Wave Solutions for the (2+ 1)-Dimensional Konopelchenko–Dubrovsky Equation and Kdv Equation
,”
Mod. Phys. Lett. B
,
33
(
18
), p.
1950199
.10.1142/S0217984919501999
26.
Xian-Lin
,
Y.
, and
Jia-Shi
,
T.
,
2008
, “
Travelling Wave Solutions for Konopelchenko–Dubrovsky Equation Using an Extended Sinh-Gordon Equation Expansion Method
,”
Commun. Theor. Phys.
,
50
(
5
), pp.
1047
1051
.10.1088/0253-6102/50/5/06
27.
Alfalqi
,
S. H.
,
Alzaidi
,
J. F.
,
Lu
,
D.
, and
Khater
,
M.
,
2019
, “
On Exact and Approximate Solutions of (2+ 1)-Dimensional Konopelchenko-Dubrovsky Equation Via Modified Simplest Equation and Cubic b-Spline Schemes
,”
Therm. Sci.
,
23
(
Suppl. 6
), pp.
1889
1899
.10.2298/TSCI190131349A
28.
Dusunceli
,
F.
,
2019
, “
New Exponential and Complex Traveling Wave Solutions to the Konopelchenko-Dubrovsky Model
,”
Adv. Math. Phys.
,
2019
, pp.
1
9
.10.1155/2019/7801247
29.
Taghizadeh
,
N.
, and
Mirzazadeh
,
M.
,
2011
, “
Exact Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation by the First Integral Method
,”
Appl. Appl. Math
,
6
(
1
), pp.
153
161
.https://digitalcommons.pvamu.edu/aam/vol6/iss1/12
30.
Kumar
,
M.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2016
, “
Similarity Solutions of the Konopelchenko–Dubrovsky System Using Lie Group Theory
,”
Comput. Math. Appl.
,
71
(
10
), pp.
2051
2059
.10.1016/j.camwa.2016.03.023
31.
Jumarie
,
G.
,
2006
, “
Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results
,”
Comput. Math. Appl.
,
51
(
9–10
), pp.
1367
1376
.10.1016/j.camwa.2006.02.001
32.
Kudryashov
,
N. A.
,
2012
, “
One Method for Finding Exact Solutions of Nonlinear Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
6
), pp.
2248
2253
.10.1016/j.cnsns.2011.10.016
33.
Li
,
Z.-B.
, and
He
,
J.-H.
,
2010
, “
Fractional Complex Transform for Fractional Differential Equations
,”
Math. Comput. Appl.
,
15
(
5
), pp.
970
973
.10.3390/mca15050970
34.
Bekir, A., Güner
,
Ö.
, and
Cevikel
,
A. C.
,
2013
, “
Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations
,”
Abst. Appl. Anal.
,
2013
, p.
426462
.10.1155/2013/426462
35.
W.-H
,
S.
,
Yang
,
X.-J.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2013
, “
Fractional Complex Transform Method for Wave Equations on Cantor Sets Within Local Fractional Differential Operator
,”
Adv. Differ. Equat.
,
2013
(
1
), pp.
1
8
.10.1186/1687-1847-2013-97
36.
Zabihi
,
F.
, and
Saffarian
,
M.
,
2016
, “
A Meshless Method Using Radial Basis Functions for Numerical Solution of the Two-Dimensional Kdv-Burgers Equation
,”
Eur. Phys. J. Plus
,
131
(
7
), pp.
1
10
.10.1140/epjp/i2016-16243-y
37.
Zabihi
,
F.
, and
Saffarian
,
M.
,
2017
, “
A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional zk–Bbm Equation
,”
Int. J. Appl. Comput. Math.
,
3
(
4
), pp.
4001
4013
.10.1007/s40819-016-0287-z
38.
Murio
,
D. A.
,
2008
, “
Implicit Finite Difference Approximation for Time Fractional Diffusion Equations
,”
Comput. Math. Appl.
,
56
(
4
), pp.
1138
1145
.10.1016/j.camwa.2008.02.015
39.
Lin
,
Y.
, and
Xu
,
C.
,
2007
, “
Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation
,”
J. Comput. Phys.
,
225
(
2
), pp.
1533
1552
.10.1016/j.jcp.2007.02.001
40.
Sun
,
Z.-Z.
, and
Wu
,
X.
,
2006
, “
A Fully Discrete Difference Scheme for a Diffusion-Wave System
,”
Appl. Numer. Math.
,
56
(
2
), pp.
193
209
.10.1016/j.apnum.2005.03.003
41.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp.
12
20
.10.1016/j.amc.2006.08.162
You do not currently have access to this content.